

US009416391B2

(12) United States Patent

Martinho et al.

(10) Patent No.: US 9

US 9,416,391 B2

(45) **Date of Patent:** Aug. 16, 2016

(54) METHOD FOR IDENTIFYING CANCER DRUG CANDIDATES IN *DROSOPHILA*

(71) Applicant: Thelial Technologies S.A., Lisbon (PT)

(72) Inventors: Rui Gonçalo Viegas Russo da

Conceição Martinho, Lisbon (PT); Virginia Mylena de Oliveira Marques, Corroios (PT); Richard John Hampson,

Lisbon (PT)

(73) Assignee: Thelial Technologies S.A., Lisbon (PT)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/679,341

(22) Filed: Nov. 16, 2012

(65) Prior Publication Data

US 2013/0136694 A1 May 30, 2013

Related U.S. Application Data

- (60) Provisional application No. 61/561,560, filed on Nov. 18, 2011.
- (51) Int. Cl. C12N 15/00 (2006.01) C12Q 1/00 (2006.01) C12Q 1/02 (2006.01) G01N 33/50 (2006.01)

(58) Field of Classification Search CPC .. C12Q 1/025; C12Q 1/6897; A01K 67/0339; G01N 33/5085

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,316,690	B1	11/2001	Fogarty
6,489,127	B1	12/2002	Duyk et al.
6,548,733	B2	4/2003	Hafen
6,552,181	B1	4/2003	Dean et al.
6,579,701	B1	6/2003	Keegan et al.
7,312,041	B2	12/2007	Lu et al.
7,317,086	B2	1/2008	Dean et al.
7,595,151	B2	9/2009	Lu et al.
7,642,400	B2	1/2010	Fields et al.
7,695,899	B2	4/2010	Su et al.
2004/0224349	A1	11/2004	Alexander et al.
2006/0010505	$\mathbf{A}1$	1/2006	Baranski et al.
2006/0156421	$\mathbf{A1}$	7/2006	Cagan et al.
2008/0124702	$\mathbf{A}1$	5/2008	Lu et al.

FOREIGN PATENT DOCUMENTS

WO	WO 2005/112978	12/2005
WO	WO 2013/073979	5/2013

OTHER PUBLICATIONS

Tsen C., et al. A *Drosophila* Model to Identify Polyamine-Drug Conjugates That Target the Polyamine Transporter in an Intact Epithelium. J. Med. Chem. 2008, 51, 324-330.*

Leduc CJ. Cancer Therapeutics in *Drosophila melanogaster*: A Closer Look at the ErbB Family of Receptor Tyrosine Kinases. WPI, Project Report, 2007, 1-35.*

Perrimon N, et al. Applications of High-Throughput RNA Interference Screens to Problems in Cell and Developmental Biology. Genetics 175: 7-16, Jan. 2007.*

Warner SJ, et al. The Cdc42/Par6/aPKC polarity complex regulates apoptosis-induced compensatory proliferation in epithelia. Curr Biol. Apr. 27, 2010;20(8):677-86.*

Brock R, et al. Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc. Natl. Acad. Sci. USA vol. 96, pp. 10123-10128, Aug. 1999.*

Huynh JR, et al. Bazooka and PAR-6 are required with PAR-1 for the maintenance of oocyte fate in *Drosophila*. Current Biology 2001, 11-901-906 *

Petronczki M, et al. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in *Drosophila*. Nature Cell Biology, January 2001, 3:43-49.*

Venken et al Recombineering-mediated tagging of *Drosophila* genomic constructs for in vivo localization and acute protein inactivation. Nucleic Acids Res. Oct. 2008;36(18):1-9.*

Prasad et al., A protocol for culturing *Drosophila melanogaster* stage 9 egg chambers for live imaging. Nature Protocols, 2:2467-2473 (2007).*

Theurkauf et al., Reorganization of the cytoskeleton during *Drosophila oogenesis*: implications for axis specification and intercellular transport. Development 115, 923-936 (1992).*

Pokrywka et al., Microtubules Are a General Component of mRNA Localization Systems in *Drosophila oocytes*. Developmental Biology, 167, 363-370 (1995).*

Becalska et al., Lighting up mRNA localization in *Drosophila oogenesis*. Development, 136.2493•2503 (2009).*

Royer et al., Epithelial cell polarity: a major gatekeeper against cancer? Cell Death and Differentiation (2011) 18, 1470-1477.*

(Continued)

Primary Examiner — Kevin Hill Assistant Examiner — Arthur S Leonard (74) Attorney, Agent, or Firm — Gary J. Gershik; Cooper & Dunham LLP

(57) ABSTRACT

A process for preparing information that identifies a compound as capable of perturbing the epithelium in a D. melanogaster comprising the steps of: i) obtaining a D. melanogaster which is genetically unmodified except that the D. melanogaster optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein; ii) contacting the D. melanogaster with the compound; and iii) determining whether there is a difference between the epithelium of the D. melanogaster of ii) and the epithelium of a corresponding D. melanogaster not contacted with the compound, wherein the presence of a difference between the epithelium of the \mathcal{D} . melanogaster contacted with the compound and the epithelium of a corresponding D. melanogaster not contacted with the compound identifies the compound as a compound that is capable of perturbing the epithelium in a D. melanogaster.

12 Claims, No Drawings

(56) References Cited

OTHER PUBLICATIONS

International Search Report, issued Apr. 3, 2013 in connection with PCT International Patent Application No. PCT/PT2012/000046.

Anuradha et al (2008) "Drosophila-based in vivo assay for the validation of inhibitors of the epidermal growth factor receptor/Ras pathway" Journal of Biosciences (Bangalore), 33(5):731-742.

Giacomotto et al (2010) "High-Throughput screening in small animal models, where are we?" British Journal of Pharmacology, 160(2):204-216.

Gladstone et al (2011) "Chemical genetics and drug screening in cancer models" Journal of Genetics and Genomics, 39(10):497-504. Basteck and St Jonston (2008) "Drosophila oogenesis" Current Biology 18(23):R1082-R1087.

Bleicher et al. (2003) "Hit and Lead Generation: Beyond High-Throughput Screening" Nature Reviews 2, 369-378.

Das and Cagan, (2010) "Drosophila as a Novel Therapeutic Discovery Tool for Thyroid Cancer" Thyroid 20(7):689-695.

Brumby and Richardson, (2005) "Using *Drosophila melanogaster* to Map Human Cancer Pathways" Nature Reviews Cancer 5, 626-639. GenBank Accession No. NM_133010, (2000) Adams et al.

Hampson and Wyatt, (2011) "Whole Organism Based Techniques and Approaches in Early State Oncology Drug Discovery—Patents and Trends" Recent Patents on Endocrine, Metabolic & Immune Drug Discovery 5(3):1-9.

Horne-Badovinac and Bilder, (2005) "Mass Transit: Epithelial Morphogenesis in the *Drosophila* Egg Chamber" Developmental Dynamics 232:559-574.

Janssens et al., (2006) "The Wnt-dependent signaling pathways as target in oncology drug discovery" Investigational New Drugs 24:263-280.

Johnston, (2002) "The Art and Design of Genetic Screens: *Drosophila melanogaster*" Nature Reviews Genetics 3, 176-188. Keseru and Makara, (2006) "Hit discovery and hit-to-lead approaches" Drug Discovery today 11(15/16):741-748.

Pandey and Nichols, (2011) "Human Disease Models in *Drosophila melanogaster* and the Role of the Fly in Therapeutic Drug Discovery" Pharmacological Reviews 63:411-436.

Petronczki and Knoblich, (2001) "DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in *Drosophila*" Nature Cell Biology 3, 43-49.

Tepass, (1997) "Epithelial differentiation in *Drosophila*" BioEssays 19(8):673-682.

Tickoo and Russell, (2002) "Drosophila melanogaster as a model system for drug discovery and pathway screening" Current Opinion in Pharmacology 2:555-560.

Wirtz-Peitz et al., (2008) "Linking Cell Cycle to Asymmetric Division: Aurora-A Phosphorylates the Par Complex Co Regulate Numb Localization" Cell 135, 161-173.

Medros Technology website, available at: www.medrospharma.com/ Technology.html, accessed Jan. 8, 2013.

Exelixis website, available at: www.exelixis,com, accessed Jan. 8, 2013.

The Genetics Company website, available at www.the-genetics.com, accessed Jan. 8, 2013.

Summit plc website, available at www.summitplc.com, accessed Jan. 8, 2013.

Phylonix website, available at www.phylonix.com, accessed Jan. 8, 2013

PerkinElmer website, available at www.perkinelmer.com/Sitemap, accessed Jan. 8, 2013.

Scottish Biomedical website, available at www.scottish-biomedical.com, accessed Jan. 8, 2013.

Apr. 30, 2014 Office Action, issued in connection with Canadian Patent Application No. 2,796,520.

Knoblich, J.A., Asymmetric cell division: recent developments and their implications for tumour biology, Nat Rev Mol Cell Biol., 11(12), pp. 849-860, Dec. 2010.

Fields, A.P., Targeting the oncogenic protein Cinase CI signaling pathway for the treatment of cancer. Biochemical Society Transactions, 35(5), pp. 996-1000, 2007.

^{*} cited by examiner

METHOD FOR IDENTIFYING CANCER DRUG CANDIDATES IN DROSOPHILA

This application claims the benefit of U.S. Provisional Application No. 61/561,560, filed Nov. 18, 2011, the contents 5 of which are hereby incorporated by reference in their entirety.

This application incorporates-by-reference nucleotide and/or amino acid sequences which are present in the file "121116_7526_83099_A_Sequence_Listing_REB.txt," which is 107 kilobytes in size, and which was created Nov. 16, 2012 in the IBM-PC machine format, having an operating system compatibility with MS-Windows, which is contained in the text file filed Nov. 16, 2012 as part of this 15 application.

Throughout this application, various publications are referenced, including referenced in parenthesis. Full citations for publications referenced in parenthesis may be found listed ately preceding the claims. The disclosures of all referenced publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

BACKGROUND OF INVENTION

High Throughput Drug Screens

The drug discovery process has traditionally been initiated by searching a very large chemical library for compounds that 30 iii) determining whether there is a difference between the can affect disease characteristics, to identify "hit" compounds. Hits are further tested and developed into leads. Lead compounds in turn are further refined, generally using medicinal chemistry, and tested with view to enter clinical trials and finally developing a drug for use in man.

High throughput screening methods for hits are generally based on in vitro cell culture, biochemical assays or receptor binding assays. Hit compounds identified in these assays need much in the way of further testing and refinement for in vivo $_{40}$ use. Even in vitro cell culture assays, which are less artificial than biochemical or receptor binding assays, often fail to reliably indicate, for example, whether a compound will be toxic in vivo. The behavior of individual cells in culture can differ dramatically from the behavior of tissues in response to 45 the same agent. Cells in culture often lack the nutrients, cell-cell contacts, basal membrane contacts, cell-cell signaling events, and physical forces that influence their behavior in vivo. Furthermore, immortalized cell lines often exhibit metabolisms and signal transduction events that vary mark- 50 iii) determining whether there is a difference between the edly from the primary cell lines from which they are derived. As a result, the vast majority of hit compounds identified using traditional in vitro high throughput screening methods never become drugs, even after extensive medicinal chemis-2006).

In Vivo Drug Screens

Recently, there has been an increased interest in using whole animals to screen large chemical libraries. Such screens could potentially yield hits in a context in which 60 relevant biological systems are present and functioning together in an intact organism. Though screens in mammalian models such as mice and rats are not practical due to the time and costs that would invariably be involved, smaller organisms whose biology has already been established to be relevant with respect to human disease are attractive candidates for use in drug discovery.

2

Drosophila melanogaster as a Tool for Drug Screens

The fruit fly (D. melanogaster) is a model organism which has been applied to the study of human genetics and development due to its small size, short generation time, prolific reproduction, and genetic tractability (Beir E., 2005). D. melanogaster's usefulness as a genetic tool has facilitated the development of high throughput in vivo screens for chemical suppressors of pathological phenotypes in genetically modified strains (e.g., U.S. Pat. No. 6,316,690). While such screens may provide lead compounds which have been identified in an in vivo context, they rely on flies with artificial genetic backgrounds that often do not develop or behave like wild-type flies. In addition, D. melanogaster is an invertebrate, and as a result many aspects of its development, metabolism, and morphology can be markedly different from those of mammals.

SUMMARY OF THE INVENTION

The present invention provides a process for preparing in alphabetical order at the end of the specification immedi- 20 information that identifies a compound as capable of perturbing the epithelium in a D. melanogaster comprising the steps of:

- i) obtaining at least one D. melanogaster which is genetically unmodified except that the D. melanogaster optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the at least one D. melanogaster with the compound; and
- epithelium of the at least one D. melanogaster of ii) and the epithelium of a corresponding at least one D. melanogaster not contacted with the compound,

wherein the presence of a difference between the epithelium 35 of the at least one D. melanogaster contacted with the compound and the epithelium of a corresponding at least one D. melanogaster not contacted with the compound identifies the compound as a compound that is capable of perturbing the epithelium in a D. melanogaster.

The present invention provides a process for preparing information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- i) obtaining at least one D. melanogaster egg chamber which is genetically unmodified except that the at least one D. melanogaster egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the at least one egg chamber with the compound; and
- follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound,
- try optimization efforts are applied (Keserü and Makara, 55 wherein the presence of a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug candidate.

The present invention provides a process of producing an epithelial cancer drug comprising:

i) obtaining at least one D. melanogaster egg chamber which is genetically unmodified except that the at least one D. melanogaster egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;

- ii) contacting the at least one egg chamber with the com-
- iii) determining whether there is a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of 5 a corresponding at least one egg chamber not contacted with the compound, wherein the presence of a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug; and
- iv) producing the compound identified in step iii), thereby producing the epithelial cancer drug.

The present invention provides a process for preparing 15 information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- i) obtaining at least one D. melanogaster egg chamber which is genetically unmodified except that the at least one D. melanogaster egg chamber optionally comprises at least 20 one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the at least one egg chamber with the compound, and up to four additional compounds;
- iii) determining whether there is a difference between the 25 follicular epithelium of the at least one egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound and up to four additional compounds;
- iv) if there is a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound, contacting at least one 35 additional egg chamber according to step i) with the compound but not the additional compound or compounds of step ii) and step iii); and
- v) determining whether there is a difference between the follicular epithelium of the at least one additional egg 40 chamber of step iv) and the follicular epithelium of a corresponding at least one additional egg chamber not contacted with the compound,
 - wherein the presence of a difference between the follicular epithelium of the at least one additional egg chamber of 45 iv) and the follicular epithelium of the corresponding at least one additional egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug candidate.

The present invention provides a process of producing an 50 i) preparing or obtaining a group of compounds to be epithelial cancer drug comprising:

- i) obtaining at least one D. melanogaster egg chamber which is genetically unmodified except that the at least one D. melanogaster egg chamber optionally comprises at least operably linked to a promoter of an endogenous protein;
- ii) contacting the at least one egg chamber with the compound, and up to four additional compounds;
- iii) determining whether there is a difference between the follicular epithelium of the at least one egg chamber con- 60 tacted with the compound and up to four additional compounds and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound and up to four additional compounds;
- iv) if there is a difference between the follicular epithelium of 65 the at least one egg chamber contacted with the compound and up to four additional compounds and the follicular

- epithelium of the corresponding at least one egg chamber not contacted with the compound, contacting at least one additional egg chamber according to step i) with the compound but not the additional compound or compounds of step ii) and step iii); and
- v) determining whether the there is a difference between the follicular epithelium of the at least one additional egg chamber of step iv) and the follicular epithelium of the corresponding at least one additional egg chamber not contacted with the compound, wherein the presence of a difference between the follicular epithelium of the at least one additional egg chamber of step iv) and the follicular epithelium of the corresponding at least one additional egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug; and
- vi) producing the compound identified in step v), thereby producing the epithelial cancer drug.

The present invention provides a process for preparing information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- i) obtaining at least one D. melanogaster egg chamber which is genetically unmodified except that the at least one D. melanogaster egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the at least one egg chamber with the compound;
- iii) determining whether there is a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound; and
- iv) observing whether there is substantially more toxicity among cells other than follicle cells of the at least one egg chamber contacted with the compound than in the corresponding at least one egg chamber not contacted with the compound.

wherein the presence of a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound, without the presence of substantially more toxicity among cells other than follicle cells of the at least one egg chamber contacted with the compound than in the corresponding at least one egg chamber not contacted with the compound, identifies the compound as an epithelial cancer drug candi-

The present invention provides a process of producing an epithelial cancer drug comprising:

- screened;
- ii) performing a process of the invention for each compound from the group of compounds to identify an epithelial cancer drug candidate; and
- one nucleotide sequence encoding a reporter polypeptide 55 iii) producing the compound identified in step ii), thereby producing the epithelial cancer drug.

The present invention provides a process of preparing an epithelial cancer drug comprising:

- i) preparing or obtaining a group of compounds to be screened;
- ii) performing a process of the invention for each compound from the group of compounds to identify an epithelial cancer drug candidate;
- iii) producing the compound identified in step ii), thereby producing the epithelial cancer drug; and
- iv) preparing the identified epithelial cancer drug candidate for use in treating an epithelial cancer.

5

The present invention provides novel drug screening processes in D. melanogaster that overcome limitations of previous approaches.

The present invention provides a process for preparing information that identifies a compound as capable of perturbing the epithelium in a D. melanogaster comprising the steps

- i) obtaining a D. melanogaster which is genetically unmodified except that the *D. melanogaster* optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endog-
- ii) contacting the D. melanogaster with the compound; and
- iii) determining whether there is a difference between the 15 epithelium of the D. melanogaster of ii) and the epithelium of a corresponding D. melanogaster not contacted with the compound,

wherein the presence of a difference between the epithelium of the D. melanogaster contacted with the compound and the 20 epithelium of a corresponding D. melanogaster not contacted with the compound identifies the compound as a compound that is capable of perturbing the epithelium in a D. melano-

Aspects of the present invention provide a process for 25 preparing information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- i) obtaining a D. melanogaster egg chamber which is genetically unmodified except that the D. melanogaster egg chamber optionally comprises at least one nucleotide 30 sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the egg chamber with the compound; and
- iii) determining whether there is a difference between the follicular epithelium of the egg chamber contacted with the 35 iii) determining whether there is a difference between follicompound and the follicular epithelium of an egg chamber not contacted with the compound,

wherein the presence of a difference between the follicular epithelium of an egg chamber contacted with the compound and the follicular epithelium of a corresponding egg chamber 40 iv) if there is a difference between the follicular epithelium of not contacted with the compound identifies the compound as an epithelial cancer drug candidate.

Aspects of the present invention provide a process of producing an epithelial cancer drug comprising:

- i) obtaining a D. melanogaster egg chamber which is geneti- 45 cally unmodified except that the D. melanogaster egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the egg chamber with the compound;
- iii) determining whether there is a difference between the follicular epithelium of the egg chamber contacted with the compound and the follicular epithelium of an egg chamber not contacted with the compound, wherein the presence of a difference between the follicular epithelium of an egg 55 vi) producing the compound identified in step v), thereby chamber contacted with the compound and the follicular epithelium of a corresponding egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug; and
- iv) producing the compound identified in step iii), thereby 60 i) obtaining a D. melanogaster egg chamber which is genetiproducing the epithelial cancer drug.

Aspects of the present invention provide a process for preparing information that identifies whether a compound is an epithelial cancer drug candidate comprising:

i) obtaining a D. melanogaster egg chamber which is geneti- 65 ii) contacting the egg chamber with the compound; cally unmodified except that the D. melanogaster egg chamber optionally comprises at least one nucleotide

- sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the egg chamber with the compound, and up to four additional compounds;
- 5 iii) determining whether there is a difference between follicular epithelium of the egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of an egg chamber not contacted with the compound and up to four additional compounds;
- 10 iv) if there is a difference between the follicular epithelium of the egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of an egg chamber not contacted with the compound, contacting at least one additional egg chamber according to step i) with the compound but not the additional compound or compounds of step ii) and step iii); and
 - v) determining whether there is a difference between the follicular epithelium of the egg chamber of step iv) and the follicular epithelium of an egg chamber not contacted with the compound.

wherein the presence of a difference between the follicular epithelium of the egg chamber of iv) and the follicular epithelium of an egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug candi-

Aspects of the present invention provide a process of producing an epithelial cancer drug comprising:

- i) obtaining a D. melanogaster egg chamber which is genetically unmodified except that the D. melanogaster egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the egg chamber with the compound, and up to four additional compounds;
- cular epithelium of the egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of an egg chamber not contacted with the compound and up to four additional compounds;
- the egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of an egg chamber not contacted with the compound, contacting at least one additional egg chamber according to step i) with the compound but not the additional compound or compounds of step ii) and step iii); and
- v) determining whether the there is a difference between the follicular epithelium of the egg chamber of step iv) and the follicular epithelium of an egg chamber not contacted with the compound, wherein the presence of a difference between the follicular epithelium of the egg chamber of step iv) and the follicular epithelium of a corresponding egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug; and
- producing the epithelial cancer drug.

Aspects of the present invention provide a process for preparing information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- cally unmodified except that the D. melanogaster egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- iii) determining whether there is a difference between the follicular epithelium of the egg chamber contacted with the

compound and the follicular epithelium of an egg chamber not contacted with the compound; and

 iv) observing whether there is more toxicity among cells other than follicle cells of the egg chamber contacted with the compound than in the egg chamber not contacted with the
 5

wherein the presence of a difference between the follicular epithelium of an egg chamber contacted with the compound and the follicular epithelium of a corresponding egg chamber not contacted with the compound, without the presence of substantially more toxicity among cells other than follicle cells of the egg chamber contacted with the compound than in the egg chamber not contacted with the compound, identifies the compound as an epithelial cancer drug candidate.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a process for preparing information that identifies a compound as capable of perturbing the epithelium in a *D. melanogaster* comprising the steps 20 of:

- i) obtaining at least one *D. melanogaster* which is genetically unmodified except that the *D. melanogaster* optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an 25 endogenous protein;
- ii) contacting the at least one *D. melanogaster* with the compound; and
- iii) determining whether there is a difference between the epithelium of the at least one *D. melanogaster* of ii) and the 30 epithelium of a corresponding at least one *D. melanogaster* not contacted with the compound,

wherein the presence of a difference between the epithelium of the at least one *D. melanogaster* contacted with the compound and the epithelium of a corresponding at least one *D.* 35 *melanogaster* not contacted with the compound identifies the compound as a compound that is capable of perturbing the epithelium in a *D. melanogaster*.

In some embodiments, the process further comprises identifying whether a compound that is capable of perturbing the 40 epithelium in a *D. melanogaster* specifically perturbs the epithelium by determining whether there is a difference between non-epithelial tissue of the at least one *D. melanogaster* contacted with the compound and the non-epithelial tissue of a corresponding at least one *D. melanogaster* not 45 contacted with the compound, wherein when there is no difference between the non-epithelial tissue of the at least one *D. melanogaster* contacted with the compound and the non-epithelial tissue of a corresponding at least one *D. melanogaster* not contacted with the compound, the compound is 50 identified as a compound that specifically perturbs the epithelium in a *D. melanogaster*.

In some embodiments, the at least one *D. melanogaster* comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an 55 endogenous protein, and the reporter polypeptide is part of a fusion protein which comprises the endogenous protein.

In some embodiments, the endogenous protein is atypical kinase C (aPKC), Par3, Par6, Cdc42, DE-Cadherin, Crumbs (Crb), Stardust (Sdt), PATJ, Lin-7, beta-catenin, or Armadillo (Arm).

In some embodiments, the endogenous protein is Par6. In some embodiments, the at least one *D. melanogaster* is

an at least one *D. melanogaster* embryo.

In some embodiments, contacting the at least one *D. mela-* 65 *nogaster* embryo with the compound comprises injecting the compound into the at least one *D. melanogaster* embryo.

8

In some embodiments, the at least one *D. melanogaster* is an at least one female *D. melanogaster*, and the epithelium is the follicular epithelium of an egg chamber of the at least one female *D. melanogaster*.

In some embodiments, a compound which perturbs or specifically perturbs the epithelium in a *D. melanogaster* is an epithelial cancer drug candidate.

The present invention provides a process for preparing information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- obtaining at least one D. melanogaster egg chamber which is genetically unmodified except that the at least one D. melanogaster egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the at least one egg chamber with the compound; and
- iii) determining whether there is a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound,

wherein the presence of a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug candidate.

The present invention provides a process of producing an epithelial cancer drug comprising:

- obtaining at least one D. melanogaster egg chamber which is genetically unmodified except that the at least one D. melanogaster egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the at least one egg chamber with the compound;
- iii) determining whether there is a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound, wherein the presence of a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug; and
- iv) producing the compound identified in step iii), thereby producing the epithelial cancer drug.

In some embodiments, the at least one *D. melanogaster* egg chamber comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein, and the reporter polypeptide is part of a fusion protein which comprises the endogenous protein.

In some embodiments, the endogenous protein is atypical kinase C (aPKC), Par3, Par6, Cdc42, DE-Cadherin, Crumbs (Crb), Stardust (Sdt), PATJ, Lin-7, beta-catenin, or Armadillo (Arm).

In some embodiments, the endogenous protein is Par6.

In some embodiments, the difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound is altered expression of the fusion protein in the follicular epithelium.

In some embodiments, altered expression of the fusion protein comprises increased expression of the fusion protein

in the follicular epithelium of the at least one egg chamber contacted with the compound compared to the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound.

In some embodiments, altered expression of the fusion 5 protein comprises decreased expression of the fusion protein in the follicular epithelium of the at least one egg chamber contacted with the compound compared to the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound.

In some embodiments, altered expression of the fusion protein comprises a different localization of the fusion protein within follicle epithelial cells of the at least one egg chamber contacted with the compound compared to follicle epithelial cells of the corresponding at least one egg chamber 15 not contacted with the compound.

In some embodiments, there is proportionally less localization of the fusion protein at the apical side of the follicle epithelial cells of the at least one egg chamber contacted with the compound compared to the follicle epithelial cells of the 20 corresponding at least one egg chamber not contacted with the compound.

In some embodiments, altered expression of the fusion protein comprises a different location of protein production and/or post-transcriptional modification of the fusion protein in the follicular epithelium of the at least one egg chamber contacted with the compound compared to the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound.

In some embodiments, the difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound is altered architecture of the follicular epithelium of the at least one egg chamber contacted with the compound 35 compared to the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound.

In some embodiments, the altered architecture comprises multilayering of follicle cells.

In some embodiments, the altered architecture comprises a 40 change in the shape of a subtype of follicle cells.

In some embodiments, the difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of the corresponding at least one egg chamber not contacted with the 45 compound is altered migration of a subtype of follicle cells within the follicular epithelium of the at least one egg chamber contacted with the compound compared to the same subtype of follicle cells within the follicular epithelium of the corresponding at least one egg chamber not contacted with 50 the compound.

In some embodiments, the subtype of follicle cells is selected from the group consisting of border cells, stretch cells, polar cells, and centripetal cells.

The present invention provides a process for preparing 55 information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- i) obtaining at least one *D. melanogaster* egg chamber which
 is genetically unmodified except that the at least one *D. melanogaster* egg chamber optionally comprises at least
 one nucleotide sequence encoding a reporter polypeptide
 operably linked to a promoter of an endogenous protein;
- ii) contacting the at least one egg chamber with the compound, and up to four additional compounds;
- iii) determining whether there is a difference between the 65 follicular epithelium of the at least one egg chamber contacted with the compound and up to four additional com-

10

pounds and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound and up to four additional compounds;

- iv) if there is a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound, contacting at least one additional egg chamber according to step i) with the compound but not the additional compound or compounds of step ii) and step iii); and
- v) determining whether there is a difference between the follicular epithelium of the at least one additional egg chamber of step iv) and the follicular epithelium of a corresponding at least one additional egg chamber not contacted with the compound,
 - wherein the presence of a difference between the follicular epithelium of the at least one additional egg chamber of iv) and the follicular epithelium of the corresponding at least one additional egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug candidate.

The present invention provides a process of producing an epithelial cancer drug comprising:

- i) obtaining at least one D. melanogaster egg chamber which
 is genetically unmodified except that the at least one D.
 melanogaster egg chamber optionally comprises at least
 one nucleotide sequence encoding a reporter polypeptide
 operably linked to a promoter of an endogenous protein;
- In some embodiments, the difference between the follicu- 30 ii) contacting the at least one egg chamber with the competite pound, and up to four additional compounds;
 - iii) determining whether there is a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound and up to four additional compounds;
 - iv) if there is a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound, contacting at least one additional egg chamber according to step i) with the compound but not the additional compound or compounds of step ii) and step iii); and
 - v) determining whether the there is a difference between the follicular epithelium of the at least one additional egg chamber of step iv) and the follicular epithelium of the corresponding at least one additional egg chamber not contacted with the compound, wherein the presence of a difference between the follicular epithelium of the at least one additional egg chamber of step iv) and the follicular epithelium of the corresponding at least one additional egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug; and
 - vi) producing the compound identified in step v), thereby producing the epithelial cancer drug.

The present invention provides a process for preparing information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- i) obtaining at least one D. melanogaster egg chamber which
 is genetically unmodified except that the at least one D.
 melanogaster egg chamber optionally comprises at least
 one nucleotide sequence encoding a reporter polypeptide
 operably linked to a promoter of an endogenous protein;
- ii) contacting the at least one egg chamber with the compound:

- iii) determining whether there is a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of a corresponding at least one egg chamber not contacted with the compound; and
- iv) observing whether there is substantially more toxicity among cells other than follicle cells of the at least one egg chamber contacted with the compound than in the corresponding at least one egg chamber not contacted with the

wherein the presence of a difference between the follicular epithelium of the at least one egg chamber contacted with the compound and the follicular epithelium of the corresponding at least one egg chamber not contacted with the compound, 15 without the presence of substantially more toxicity among cells other than follicle cells of the at least one egg chamber contacted with the compound than in the corresponding at least one egg chamber not contacted with the compound, identifies the compound as an epithelial cancer drug candi- 20

In some embodiments, the presence of substantially more toxicity is observed in all cells other than follicle cells of the at least one egg chamber.

In some embodiments, the presence of substantially more 25 toxicity is observed in one or more nurse cells of the at least one egg chamber.

In some embodiments, the presence of substantially more toxicity is observed in the oocyte of the at least one egg

In some embodiments, toxicity is determined by morphol-

In some embodiments, toxicity is increased cell death.

In some embodiments, the presence of more cell death is due to apoptosis.

In some embodiments, the presence of more cell death is due to necrosis.

In some embodiments, 10 to 30 D. melanogaster egg chambers are obtained and contacted with the compound.

In some embodiments, about 10, 15, 20, 25, or 30 D. 40 melanogaster egg chambers are obtained and contacted with the compound.

In some embodiments, at least 10, 15, 20, 25, or 30 D. melanogaster egg chambers are obtained and contacted with each compound.

In some embodiments, 20 D. melanogaster egg chambers are obtained and contacted with the compound.

The present invention provides a process of producing an epithelial cancer drug comprising:

- screened;
- ii) performing a process of the invention for each compound from the group of compounds to identify an epithelial cancer drug candidate; and
- iii) producing the compound identified in step ii), thereby 55 producing the epithelial cancer drug.

The present invention provides a process of preparing an epithelial cancer drug comprising:

- i) preparing or obtaining a group of compounds to be screened;
- ii) performing a process of the invention for each compound from the group of compounds to identify an epithelial cancer drug candidate;
- iii) producing the compound identified in step ii), thereby producing the epithelial cancer drug; and
- iv) preparing the identified epithelial cancer drug candidate for use in treating an epithelial cancer.

12

In some embodiments, a process of the invention is performed for each compound in at least one well of a microwell plate, wherein the microwell plate has multiple wells such that a process of the invention may be performed for more than one compound from the group of compounds using the microwell plate.

In some embodiments, a process of the invention is performed for more than one compound from the group of compounds using the microwell plate.

In some embodiments, 10 to 30 D. melanogaster egg chambers are obtained and contacted with each compound.

In some embodiments, about 10, 15, 20, 25, or 30 D. melanogaster egg chambers are obtained and contacted with each compound.

In some embodiments, at least 10, 15, 20, 25, or 30 D. melanogaster egg chambers are obtained and contacted with each compound.

In some embodiments, 20 D. melanogaster egg chambers are obtained and contacted with each compound.

The present invention provides a process for preparing information that identifies a compound as capable of perturbing the epithelium in a D. melanogaster comprising the steps

- i) obtaining a D. melanogaster which is genetically unmodified except that the D. melanogaster optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the D. melanogaster with the compound; and 30 iii) determining whether there is a difference between the epithelium of the D. melanogaster of ii) and the epithelium of a corresponding D. melanogaster not contacted with the compound,

wherein the presence of a difference between the epithelium 35 of the *D. melanogaster* contacted with the compound and the epithelium of a corresponding D. melanogaster not contacted with the compound identifies the compound as a compound that is capable of perturbing the epithelium in a D. melanogaster.

In some embodiments the process further comprises identifying whether a compound that is capable of perturbing the epithelium in a D. melanogaster specifically perturbs the epithelium by determining whether there is a difference between non-epithelial tissue of the D. melanogaster contacted with the compound and the non-epithelial tissue of a corresponding D. melanogaster not contacted with the compound, wherein when there is no difference between the nonepithelial tissue of the D. melanogaster contacted with the compound and the non-epithelial tissue of a corresponding D. i) preparing or obtaining a group of compounds to be 50 melanogaster not contacted with the compound, the compound is identified as a compound that specifically perturbs the epithelium in a D. melanogaster.

> In some embodiments, the D. melanogaster comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein, and the reporter polypeptide is part of a fusion protein which comprises the endogenous protein.

> In some embodiments, the endogenous protein is atypical kinase C (aPKC), Par3, Par6, Cdc42, DE-Cadherin, Crumbs (Crb), Stardust (Sdt), PATJ, Lin-7, beta-catenin, or Armadillo (Arm).

In some embodiments, the endogenous protein is Par6.

In some embodiments, the D. melanogaster is a D. melanogaster embryo.

In some embodiments, contacting the D. melanogaster embryo with the compound comprises injecting the compound into the D. melanogaster embryo.

In some embodiments, the *D. melanogaster* is a female *D. melanogaster*, and the epithelium is the follicular epithelium of an egg chamber of the female *D. melanogaster*.

In some embodiments, a compound which perturbs or specifically perturbs the epithelium in a *D. melanogaster* is an epithelial cancer drug candidate.

Aspects of the present invention provide a process for preparing information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- i) obtaining a *D. melanogaster* egg chamber which is genetically unmodified except that the *D. melanogaster* egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the egg chamber with the compound; and
- iii) determining whether there is a difference between the follicular epithelium of the egg chamber contacted with the compound and the follicular epithelium of an egg chamber not contacted with the compound,

wherein the presence of a difference between the follicular epithelium of an egg chamber contacted with the compound and the follicular epithelium of a corresponding egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug candidate.

Aspects of the present invention provide a process of producing an epithelial cancer drug comprising:

- i) obtaining a *D. melanogaster* egg chamber which is genetically unmodified except that the *D. melanogaster* egg chamber optionally comprises at least one nucleotide 30 sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the egg chamber with the compound;
- iii) determining whether there is a difference between the follicular epithelium of the egg chamber contacted with the 35 compound and the follicular epithelium of an egg chamber not contacted with the compound, wherein the presence of a difference between the follicular epithelium of an egg chamber contacted with the compound and the follicular epithelium of a corresponding egg chamber not contacted 40 with the compound identifies the compound as an epithelial cancer drug; and
- iv) producing the compound identified in step iii), thereby producing the epithelial cancer drug.

In some embodiments, the *D. melanogaster* egg chamber 45 comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein, and the reporter polypeptide is part of a fusion protein which comprises the endogenous protein.

In some embodiments, the endogenous protein is atypical kinase C (aPKC), Par3, Part, Cdc42, DE-Cadherin, Crumbs (Crb), Stardust (Sdt), PATJ, Lin-7, beta-catenin, or Armadillo (Arm).

In some embodiments, the endogenous protein is Par6.

In some embodiments, the difference between the follicular epithelium of an egg chamber contacted with the compound and the follicular epithelium of a corresponding egg chamber not contacted with the compound is altered expression of the fusion protein in follicular epithelium.

In some embodiments, altered expression of the fusion 60 protein comprises increased expression of the fusion protein in follicular epithelium of the egg chamber contacted with the compound compared to the follicular epithelium of a corresponding egg chamber not contacted with the compound.

In some embodiments, altered expression of the fusion 65 protein comprises decreased expression of the fusion protein in follicular epithelium of the egg chamber contacted with the

14

compound compared to follicular epithelium of a corresponding egg chamber not contacted with the compound.

In some embodiments, altered expression of the fusion protein comprises a different localization of the fusion protein within follicle epithelial cells of the egg chamber contacted with the compound compared to follicle epithelial cells of a corresponding egg chamber not contacted with the compound.

In some embodiments, there is proportionally less localization of the fusion protein at the apical side of the follicle epithelial cells of the egg chamber contacted with the compound compared to follicle epithelial cells of a corresponding egg chamber not contacted with the compound.

In some embodiments, altered expression of the fusion protein comprises a different location of protein production and/or post-transcriptional modification of the fusion protein in the follicular epithelium of the egg chamber contacted with the compound compared to the follicular epithelium of a corresponding egg chamber not contacted with the compound.

In some embodiments, the difference between the follicular epithelium of an egg chamber contacted with the compound and the follicular epithelium of an egg chamber not contacted with the compound is altered architecture of the follicular epithelium compared to the follicular epithelium a corresponding egg chamber not contacted with the compound.

In some embodiments, the altered architecture comprises multilayering of follicle cells.

In some embodiments, the altered architecture comprises a change in the shape of a subtype of follicle cells.

In some embodiments, the difference between the follicular epithelium of an egg chamber contacted with the compound and the follicular epithelium of an egg chamber not contacted with the compound is altered migration of a subtype of follicle cells within the follicular epithelium compared to the same subtype of follicle cells within the follicular epithelium an egg chamber not contacted with the compound.

In some embodiments, the subtype of follicle cells is selected from the group consisting of border cells, stretch cells, polar cells, and centripetal cells.

Aspects of the present invention provide a process for preparing information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- i) obtaining a *D. melanogaster* egg chamber which is genetically unmodified except that the *D. melanogaster* egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- In some embodiments, the endogenous protein is atypical 50 ii) contacting the egg chamber with the compound, and up to hase C (aPKC), Par3, Part, Cdc42, DE-Cadherin, Crumbs four additional compounds;
 - iii) determining whether there is a difference between follicular epithelium of the egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of an egg chamber not contacted with the compound and up to four additional compounds;
 - iv) if there is a difference between the follicular epithelium of the egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of an egg chamber not contacted with the compound, contacting at least one additional egg chamber according to step i) with the compound but not the additional compound or compounds of step ii) and step iii); and
 - v) determining whether there is a difference between the follicular epithelium of the egg chamber of step iv) and the follicular epithelium of an egg chamber not contacted with the compound,

wherein the presence of a difference between the follicular epithelium of the egg chamber of iv) and the follicular epithelium of an egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug candidate.

Aspects of the present invention provide a process of producing an epithelial cancer drug comprising:

- i) obtaining a *D. melanogaster* egg chamber which is genetically unmodified except that the *D. melanogaster* egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the egg chamber with the compound, and up to four additional compounds;
- iii) determining whether there is a difference between follicular epithelium of the egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of an egg chamber not contacted with the compound and up to four additional compounds;
- iv) if there is a difference between the follicular epithelium of the egg chamber contacted with the compound and up to four additional compounds and the follicular epithelium of an egg chamber not contacted with the compound, contacting at least one additional egg chamber according to step i) 25 with the compound but not the additional compound or compounds of step ii) and step iii); and
- v) determining whether the there is a difference between the follicular epithelium of the egg chamber of step iv) and the follicular epithelium of an egg chamber not contacted with 30 the compound, wherein the presence of a difference between the follicular epithelium of the egg chamber of step iv) and the follicular epithelium of a corresponding egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug; and

vi) producing the compound identified in step v), thereby producing the epithelial cancer drug.

Aspects of the present invention provide a process for preparing information that identifies whether a compound is an epithelial cancer drug candidate comprising:

- i) obtaining a D. melanogaster egg chamber which is genetically unmodified except that the D. melanogaster egg chamber optionally comprises at least one nucleotide sequence encoding a reporter polypeptide operably linked to a promoter of an endogenous protein;
- ii) contacting the egg chamber with the compound;
- iii) determining whether there is a difference between the follicular epithelium of the egg chamber contacted with the compound and the follicular epithelium of an egg chamber not contacted with the compound; and
- iv) observing whether there is more toxicity among cells other than follicle cells of the egg chamber contacted with the compound than in the egg chamber not contacted with the compound,

wherein the presence of a difference between the follicular 55 epithelium of an egg chamber contacted with the compound and the follicular epithelium of a corresponding egg chamber not contacted with the compound, without the presence of substantially more toxicity among cells other than follicle cells of the egg chamber contacted with the compound than in 60 the egg chamber not contacted with the compound, identifies the compound as an epithelial cancer drug candidate.

In some embodiments, the presence of more toxicity is observed in all cells other than follicle cells of the egg chamber

In some embodiments, the presence of more toxicity is observed in one or more nurse cells of the egg chamber.

16

In some embodiments, the presence of more toxicity is observed in the oocyte of the egg chamber.

In some embodiments, toxicity is determined by morphology.

In some embodiments, toxicity is increased cell death.

In some embodiments, the presence of more cell death is due to apoptosis.

In some embodiments, the presence of more cell death is due to necrosis.

Each embodiment disclosed herein is contemplated as being applicable to each of the other disclosed embodiments. Thus, all combinations of the various elements described herein are within the scope of the invention.

It is understood that where a parameter range is provided, all integers within that range, and tenths thereof, are also provided by the invention. For example, "0.2-5 mg/kg/day" is a disclosure of 0.2 mg/kg/day, 0.3 mg/kg/day, 0.4 mg/kg/day, 0.5 mg/kg/day, 0.6 mg/kg/day etc. up to 5.0 mg/kg/day.

Terms

As used herein, and unless stated otherwise, each of the following terms shall have the definition set forth below.

As used herein, "about" in the context of a numerical value or range means ±10% of the numerical value or range recited or claimed, unless the context requires a more limited range.

As used herein, a "cancer drug candidate" is a compound which is identified to produce a difference in a *D. melanogaster* which has been contacted with the compound, compared to a *D. melanogaster* which has not been contacted with the compound.

As used herein, "epithelial cancer" means a carcinoma. A carcinoma is a cancer derived from epithelial cells. Subtypes of carcinomas include but are not limited to adenocarcinoma, squamous cell carcinoma, adenosquamous carcinoma, anaplastic carcinoma, large cell carcinoma, small cell carcinoma, giant cell carcinoma, spindle cell carcinoma, sarcomatoid carcinoma, pleomorphic carcinoma, carcinosarcoma, pulmonary blastoma, basal cell carcinoma, linitis plastica, vipoma, cholangiocarcinoma, hepatocellular carcinoma, adenoid cystic carcinoma, renal cell carcinoma, adnexal and skin appendage neoplasms, mucoepidermoid neoplasms, and acinar cell neoplasms. The term carcinoma encompasses lung cancers, liver cancers, ovarian cancers, brain cancers, breast cancers, prostate cancers, colon cancers, pancreatic cancers, and brain cancers, of epithelial origin.

As used herein, "D. melanogaster" refers to an insect or insects as well as to parts of the insect belonging to the species Drosophila melanogaster, without regard to the developmental stage thereof and including, embryos (eggs), larvae, pupae, and mature adult flies of the insect, unless a specific developmental stage or a specific part is specified.

As used herein in regard to cell and tissue function, to "perturb" means to alter an aspect of the normal cell and tissue function of an organism, including but not limited to the embryonic development of a *D. melanogaster*, the development of an epithelium within a *D. melanogaster*, the development of a structure or tissue within a *D. melanogaster* such as an egg chamber of a *D. melanogaster*, or the development of an epithelium within a part of a *D. melanogaster*, such as an egg chamber. To perturb cell and tissue function of an epithelium, may mean to alter the normal growth, behavior, or morphology of a cell or the progeny thereof that is within a developing epithelium, and/or to alter the normal interaction or arrangement of cells or the progeny thereof that are within a developing epithelium, and/or to alter the normal growth, behavior, or morphology of a developing epithelium. To "per-

turb the epithelium" means to alter an aspect of a normal epithelial cell's function or of an epithelial tissue function in an organism or a part thereof.

As used herein, "epithelium" refers to tissue that lines the cavities and surfaces of an organism's body, and also form 5 many glands. Types of D. melanogaster epitheliums include but are not limited to the follicular epithelium of the egg chamber, and the blastoderm epithelium, foregut epithelium, hindgut epithelium, neuroectodermal endothelium, subperineurium and peripheral glia, gonadal sheet, dorsal vessel, 10 salivary glands, and malpighian tubules of the embryo.

As used herein, "follicular epithelium" or "follicle cell epithelium" means the somatic monolayer which surrounds the germ cells of a Drosophila melanogaster egg chamber. The follicular epithelium produces yolk and eggshell compo- 15 nents of the egg, and also participates in signaling events with the germ cells that help determine future embryonic axes (Horne-Badovinac and Bilder, 2005).

As used herein, "follicle cell" means a cell which is part of, or derived from the follicular epithelium.

As used herein, "label" means a substance which may be introduced into a living or non-living cell such that it allows for the specific detection of a protein within the cell by any technique known in the art. The label may comprise a portion that is capable of binding to another protein, and a portion that 25 is a marker. In some aspects of the invention, the portion that is capable of binding to another protein is attached to the marker by a covalent bond.

As used herein, a "marker" may be any molecule that provides an identifiable signal within a cell, or that facilitates 30 the determination of the expression or location of a protein in a cell by any technique known in the art. Non-limiting examples of markers are fluorescent dyes, phosphorescent dyes, quantum dots, and reporter polypeptides.

As used herein, a "reporter polypeptide" is a protein or 35 oligopeptide that provides an identifiable signal within a cell, or which is capable of being specifically detected within a cell by any technique known in the art. The cell may be alive or dead. Examples of reporter polypeptides include but are not rescent proteins, luminescent proteins and chromogenic enzymes such as horseradish peroxidase.

As used herein, an "epitope tag" is an amino acid sequence for which antibodies with suitable specificity and affinity have been generated, or may be generated.

As used herein, "altered expression" means having an amount or localization of a protein in a cell which is or was contacted with at least one compound, or the progeny thereof, compared to amount of localization of the protein in a corresponding untreated cell, or the progeny thereof. Altered 50 expression of a protein may be increased expression of the protein, decreased expression of the protein, or a different localization of the protein within a cell or the progeny of the cell that is or has been contacted with at least one compound compared to a corresponding untreated cell or the progeny 55 thereof. Altered expression may also be a different location of expression of the protein within a group of cells or a tissue in a D. melanogaster which is or has been contacted with at least one compound, compared to a corresponding group of cells or tissue in an untreated D. melanogaster, for example, within 60 the follicular epithelium of an egg chamber of a D. melano-

As used herein, "altered architecture" means a different number, shape, and/or arrangement of cells within a group of cells or a tissue of a D. melanogaster which is or has been 65 contacted with at least one compound compared to a corresponding group of cells or tissue in an untreated D. melano18

gaster. In one non-limiting example, altered architecture may be the multilayering of cells in a D. melanogaster which has been contacted with a compound in a location where the corresponding cells an untreated D. melanogaster form a monolayer.

As used herein, "incubation medium" means growth medium which contains a compound with which a D. melanogaster egg chamber will be contacted and/or is being contacted and/or was contacted.

As used herein, a "fluorophore" is a molecule which absorbs electromagnetic energy at one wavelength and reemits energy at another wavelength. A fluorophore may be a molecule or part of a molecule including fluorescent dyes and proteins.

Labels, Markers, and Reporter Polypeptides

Aspects of the invention relate to the detection of a labeled protein or a fusion protein within a D. melanogaster. The label may be used to specifically detect the presence and/or the amount and/or the localization of any endogenous protein 20 which is expressed in the epithelium of a D. melanogaster. The label may also be used to detect the presence of a fusion protein which is expressed in the epithelium of a D. melanogaster. The fusion protein may comprise amino acids in the sequence of the amino acid sequence of an endogenous protein melanogaster and the amino acid sequence of a reporter polypeptide. In some embodiments, the protein which is expressed in the epithelium of a wild-type D. melanogaster is atypical kinase C (aPKC), Par3, Par6, Cdc42, DE-Cadherin, Crumbs (Crb), Stardust (Sdt), PATj, Lin-7, beta-catenin, or Armadillo (Arm). In some embodiments which comprise a label, the protein to which the label binds is Par6. In some embodiments which comprise a fusion protein, the fusion protein comprises amino acids in the amino acid sequence of Par6 and the amino acid sequence of a reporter polypeptide. The label may comprise a portion that is capable of binding to a protein or fusion protein, and a marker. The portion of the label which is capable of binding to a protein or fusion protein may be covalently attached to the marker.

One of skill in the art will understand that there may be limited to streptavidin, beta-galactosidase, epitope tags, fluo- 40 more than one isoform for each of atypical kinase C (aPKC), Par3, Par6, Cdc42, DE-Cadherin, Crumbs (Crb), Stardust (Sdt), PATi, Lin-7, beta-catenin, or Armadillo (Arm), and that any isoform of one of these proteins may be used in accordance with embodiments of the invention. Non-limiting examples of atypical kinase C (aPKC), Par3, Par6, Cdc42, DE-Cadherin, Crumbs (Crb), Stardust (Sdt), PATj, Lin-7, Armadillo (Arm) and beta-catenin isoform amino acid sequences are set forth as SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 12, and SEQ ID NO: 13, respectively.

> In some embodiments which comprise a label, the label comprises a marker which is a fluorophore. Non-limiting examples of fluorophores include fluorescent dyes, phosphorescent dyes, quantum dots, xanthene derivatives, cyanine derivatives, naphthalene derivatives, coumarin derivatives, oxadiaxol derivatives, pyrene derivatives, acridine derivatives, arylmethine derivatives, tetrapyrrole derivatives. Xanthene derivatives include but are not limited to fluorescein, rhodamine, Oregon green, eosin, Texas red, and Cal Fluor dyes. Cyanine derivatives include but are not limited to cyanine, indocarbocyanine, oxacarbocyanine, thiacarbocyanine, merocyanine, and Quasar dyes. Naphthalene derivatives include but are not limited to dansyl and productives. Oxadiazole derivatives include but are not limited to pyridyloxazol, nitrobenzoxadiazole and benzoxadiazole. A nonlimiting example of a pyrene derivative is cascade blue. Oxa-

dine derivatives include but are not limited to Nile red, Nile blue, cresyl violet, and oxazine 170. Acridine derivatives include but are not limited to proflavin, acridine orange, and acridine yellow. Arylmethine derivatives include but are not limited to auramine, crystal violet, and malachite green. Tet- 5 rapyrrole derivatives include but are not limited to porphin, phtalocyanine and bilirubin.

19

In some embodiments which comprise a label and a fusion protein, the label may comprise a portion that binds to the fusion protein and a marker. For instance, the fusion protein 10 may comprise an epitope tag to which the label binds, wherein the label comprises an antibody fragment that binds to the epitope tag. In one embodiment, the fusion protein comprises streptavidin, and the portion of the label which binds to the fusion protein is biotin.

In some embodiments, the label comprises a marker which is a reporter polypeptide.

In aspects of the invention which comprise a fusion protein or a label which comprises a reporter polypeptide, the reporter polypeptide may be an epitope tag, a fluorescent 20 protein, a luminescent protein, a chromogenic enzyme, streptavidin, beta-galactosidase, or any other reporter polypeptide as defined herein.

Examples of epitope tags include but are not limited to V5-tag, Myc-tag, HA-tag, FLAG-tag, GST-tag, and His-tags. 25 Additional examples of epitope tags are described in the following references: Huang and Honda, CED: a conformational epitope database. BMC Immunology 7:7 biomedcentral.com/1471-2172/7/7#B1. Retrieved Feb. 16, 2011 (2006); and Walker and Rapley, Molecular biomethods handbook. 30 Pg. 467 (Humana Press, 2008). These references in their entireties are hereby incorporated by reference into this application. In some embodiments of the invention a label comprising an antibody or an antibody fragment is used to detect the localization and/or expression of a fusion protein which 35 comprises an epitope tag.

Fluorescent proteins will be well known to one skilled in the art, and include but are not limited to GFP, AcGFP, EGFP, TagGFP, EBFP, EBFP2, Asurite, mCFP, mKeima-Red, Azami Green, YagYFP, YFP, Topaz, mCitrine, Kusabira 40 Orange, mOrange, mKO, TagGFP, RFP, DsRed, DsRed2, mstrawberry, mRFP1, mCherry, and, mRaspberry. Examples of luminescent proteins include but are not limited to enzymes which may catalyze a reaction that emits light, such as luciferase. Examples of chromogenic enzymes include but 45 are not limited to horseradish peroxidase and alkaline phosphatase.

General techniques and compositions for detecting and/or observing and/or analyzing labels and/or fusion proteins which are useful in the present invention are described in the 50 iv) monitoring the dechorionation under a microscope; following references: Tsien et al., Fluorophores for confocal microscopy. Handbook of biological confocal microscopy. New York: Plenum Press, 1995; Rietdorf, Mocroscopic techniques. Advances in Biochemical Engineering/Biotechnology. Berlin: Springer 2005; Lakowicz, J R, Principles of 55 fluorescence spectroscopy (3^{rd} ed.). Springer, 2006. These references in their entireties are hereby incorporated by reference into this application.

Injection of Compounds

whether a compound is biologically active and/or a cancer drug candidate. In some embodiments, a compound that has biological activity perturbs the epithelium in a D. melanogaster. Unlabeled embryos or genetically modified embryos may be used. Use of a D. melanogaster embryo to test a 65 compound for biological activity may comprise steps related to culturing D. melanogaster, embryo laying, embryo har20

vesting, embryo alignment, embryo injection, and embryo analysis to determine whether there is at least one difference between an embryo that has been injected with the compound and a embryo that has not been injected with the compound. General techniques useful for the culture and preparation of Drosophila include those described in the following references: Ashburner et al., Drosophila, A laboratory handbook. 1989, Cold Spring Harbor Laboratory Press, ISBN 0-87969-321-5, and Sullivan et al., ed., Drosophila Protocols. 2000, Cold Spring Harbor Laboratory Press, ISBN 978-087969586-6. These references in their entireties are hereby incorporated by reference into this application. Fly Culture

In aspects of the invention which relate to fly culture and the injection of a compound into an embryo, at least one D. melanogaster adult female fly may be used to make a laying pot for embryo harvesting. The laying pot comprises a laying substrate plate. The *D. melanogaster* adult female fly may be 2-3 days old, 2-5 days old, or 2, 3, 4, or 5 days old. In some embodiments, it is necessary to wait until the D. melanogaster adult female fly has adapted to laying pot before collecting embryos. It may be necessary to wait at least 24 hours, or 24, 30, 36, 42, or 48 hours.

Embryo Laying

On the same day that at least one embryo is injected with a compound or compounds, the existing substrate plate is replaced with a new laying substrate plate in the laying pot, and the D. melanogaster adult female fly is given a period of time to lay retained, overdeveloped eggs. In some embodiments, the period of time given may be 1, 1.5, 2, 2.5, or 3 hours. The laying substrate plate containing overdeveloped eggs is then removed from the laying pot and incubated. The laying substrate plate may be incubated at a temperature of 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30° C. The laying substrate plate may be incubated for 45, 50, 55, 60, 65, 70, 75, 80, 85, or 90 minutes. In some embodiments, the laying substrate plate may be incubated for longer than 90 minutes. Embryo Harvesting and Alignment

Some embodiments of the invention which encompass D. *melanogaster* embryo harvesting may comprise the steps of: i) placing a basket strainer in a petri dish filled with 0.1% Tween-20/H₂O;

- ii) harvesting the embryos from the laying substrate plate with a brush wet with 0.1% Tween-20/H₂O, and adding them to the basket strainer;
- iii) replacing the 0.1% Tween-20/H₂O from the petri dish. with a dechorionation agent to remove the chorions of the embryos;
- v) replacing the dechorionation agent with H₂O;
- vi) washing the embryos by replacing the H₂O with new H₂O; vii) drying the bottom of the basket;
- viii) removing the embryos with a spatula;
- ix) placing the embryos on a piece of agar;
- x) aligning the embryos;
- xi) preparing a slide with adhesive, and adhering the aligned embryos to the adhesive by inverting the slide over the embryos; and
- Injected D. melanogaster embryos may be used to identify 60 xii) desiccating the embryos in a petri dish filled with silica

Non-limiting examples of dechorionation agents which may be used in steps iii) and iv) are 25%, 30%, 35%, 40%, 45%, or 50% bleach in water. It will be understand that "H₂O" as used in steps i) to xii) hereinabove may include H2O that comprises salts and/or buffers. In some embodiments, step vi) may be repeated 1, 2, 3, 4, 5, or 6 times, or more. In some

embodiments, in the embryos of step x) may be aligned with their posterior poles in the same direction.

Injection of Embryos

Some embodiments of the invention which relate to injecting a compound into a D. melanogaster embryo may com- 5 prise the steps of:

- i) filling a needle with a solution comprising the compound; ii) creating an opening at the tip of the needle;
- iii) adjusting the drop size exiting the needle to a desired amount using a graticule; and

iv) injecting the embryo through the posterior pole.

The desired amount of step iii) may be 50 to 500 pL, or about 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 pL. In some embodiments the desired amount is 420 pL. Analysis

In some embodiments in which the embryo is not labeled and does not express a fusion protein, differences in embryos injected with a compound compared to embryos not injected with the compound may be determined by light microscopy. If embryos which are labeled or that express a fusion protein 20 are used, the label or fusion protein may be observed by appropriate methodologies including but not limited to fluorescent and confocal microscopy. After an embryo is injected with a compound, the embryo may be processed for analysis using standard procedures. Which procedure is performed 25 will depend on the label used or the fusion protein expressed in the embryo. In some embodiments of the invention, the embryo is incubated, stained, or otherwise contacted with a label, such that the label becomes attached to a protein within the embryo, before analysis of the embryo is performed.

Embryos may be observed for development and death. The embryos may be observed for 1-12 h. In some embodiments, the embryos are observed for 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, or 12 hours. In some embodiments, the death of an embryo after the embryo 35 1) selecting at least one D. melanogaster adult female fly on is injected with a compound may identify the compound as being a toxic compound.

Determining whether there is a difference between an embryo which has been injected with a compound and an be performed at any time point or time points occurring from the moment of injection of the compound until the embryo has developed into an adult fly. A time point may be a point of time as counted from a beginning reference point in time such as from the approximate moment of egg laying or the approxi-45 mate moment of injection, or from any D. melanogaster developmental stage.

Soaking of Egg Chambers

Aspects of the invention relate to the use of a dissected D. melanogaster egg chamber to test a compound for biological 50 activity, or to determine whether a compound is a cancer drug candidate. In some embodiments, a compound that has biological activity perturbs the epithelium in a D. melanogaster. Dissected egg chambers from wild-type D. melanogaster or from a genetically modified D. melanogaster may be used. In 55 some embodiments of the invention the D. melanogaster may be genetically modified to express a fusion protein comprising amino acids in the sequence of the amino acid sequence of a protein which is naturally expressed in D. melanogaster, and a reporter polypeptide. In some embodiments, a label is 60 used to detect the expression and/or localization of a protein in an egg chamber.

Processes of the invention which use a D. melanogaster egg chamber to test a compound for biological activity or to determine whether a compound is a cancer drug candidate 65 may comprise steps related to culturing D. melanogaster, preparing D. melanogaster, dissection of an egg chamber or

22

egg chambers from at least one D. melanogaster adult female fly, contacting the egg chamber or egg chambers with the compound, preparing the egg chamber for analysis, and analyzing the egg chamber for at least one difference between an egg chamber that has been contacted with the compound and a corresponding egg chamber that has not been contacted with the egg chamber. General techniques useful for the culture and preparation of D. melanogaster include those described in the following references: Ashburner et al., Drosophila. A laboratory handbook. 1989, Cold Spring Harbor Laboratory Press, ISBN 0-87969-321-5, and Sullivan et al., ed., Drosophila Protocols. 2000, Cold Spring Harbor Laboratory Press, ISBN 978-087969586-6. These references in their entireties are hereby incorporated by reference into this application.

Fly Culture

In some embodiments of the invention which relate to fly culture and the soaking of an egg chamber with a compound, at least one D. melanogaster adult female fly is incubated with at least one D. melanogaster adult male fly. In some embodiments, the D. melanogaster adult female fly may be 1 to 3 days old. In some embodiments, the D. melanogaster adult female fly is 1, 1.5, 2, 2.5, or 3 days old. In some embodiments, the D. melanogaster adult female fly may be incubated with at least one D. melanogaster adult male fly for 1 to 2 days. In some embodiments, the *D. melanogaster* adult female fly is incubated with at least one D. melanogaster adult male fly for 1, 1.5, or 2 days. In some embodiments, at least one D. melanogaster adult female fly is incubated with at least one D. melanogaster adult male fly in a bottle or vial containing D. melanogaster food and yeast ad libitum.

Fly Preparation

Some embodiments of the invention which relate to D. melanogaster adult female fly preparation may comprise the

- a CO₂ pad or after incubation of the D. melanogaster adult female fly at a temperature that is sufficiently reduced to immobilize the *D. melanogaster* adult female fly;
- ii) decapitating the D. melanogaster adult female fly; and
- embryo which has not been injected with the compound may 40 iii) transferring the D. melanogaster adult female fly to a dish which is cooled until the *D. melanogaster* a adult female fly is dissected.

In some embodiments, the dish of step iii) is cooled to a temperature at 4° C. or less.

In some embodiments, the number of female flies selected is a number that is suitable for the number of compounds. In some embodiments, 10 to 30 female flies are selected for each compound. In some embodiments about 20 female flies are selected for each compound. In some embodiments, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 female flies are selected for each compound. In some embodiments about 200, 400, 600, 800, or 1000 female flies are selected for about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 compounds.

Dissection

In some embodiments of the invention which encompass D. melanogaster adult female fly dissection may comprise the

- i) removing the ovaries of at least one D. melanogaster adult female fly for each compound;
- ii) placing the ovaries into growth medium; and
- iii) separating the ovarioles.

In some embodiments, the ovaries of 1-10 D. melanogaster adult female flies are removed. In some embodiments, the ovaries of 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 D. melanogaster adult female flies are removed.

The ovaries may be placed into 100-200 µL of growth medium, or about 100, 125, 150, 175, or 200 μL of growth

23

medium. Examples of growth media which are suitable for use in embodiments of the invention include but are not limited to Shields and Sang M3 insect medium, Schneider's medium, Robb's medium (Theurkauf, W E, Chapter 25, Methods in Cell Biology Volume 44 (1994) Lawrence S. B. Goldstein and Eric A. Fyrberg, ISBN 978-0-12-564145-6) and others, all of which may or may not be supplemented with any combination of fetal bovine serum, albumin and/or other supplements. In some embodiments, the growth medium is not supplemented with fetal bovine serum. In some embodiments, the growth medium is not supplemented with a serum free supplement. In some embodiments, the growth medium is not supplemented with a growth factor. In some embodiments, the growth medium is not supplemented with a hormone. In some embodiments, the growth medium is supplemented with fetal bovine serum or a serum free supplement or a growth factor or a hormone, or any combination thereof.

The ovarioles are processed to remove the impact of muscle sheath contraction during analysis.

Some embodiments of the invention which encompass *D. melanogaster* adult female fly dissection may comprise the steps of:

- i) Transferring flies to an electric liquefier filled with up to 250 mL of dissection medium. In some embodiments, the elec- 25 tric liquefier is filled with about 100 to about 500 mL of dissection medium. In some embodiments, the electric liquefier is filled with about 100, 150, 200, 250, 300, 350, 400, 450, or 500 mL of dissection medium. Suitable dissection mediums include but are not limited to Shields and Sang 30 M3 insect medium, Schneider's medium, Robb's medium (Theurkauf, W E, Chapter 25, Methods in Cell Biology Volume 44 (1994) Lawrence S. B. Goldstein and Eric A. Fyrberg, ISBN 978-0-12-564145-6) and others, all of which may or may not be supplemented with any combi- 35 nation of fetal bovine serum, albumin and/or other supplements. In some embodiments, the growth medium is not supplemented with fetal bovine serum. In some embodiments, the growth medium is not supplemented with a serum free supplement. In some embodiments, the growth 40 medium is not supplemented with a growth factor. In some embodiments, the growth medium is not supplemented with a hormone. In some embodiments, the growth medium is supplemented with fetal bovine serum or a serum free supplement or a growth factor or a hormone, or 45 any combination thereof;
- ii) Isolating egg chambers by fly maceration in the electric liquefier. In some embodiments, the egg chambers are isolated by fly maceration in the electric liquefier with 1, 2, 3, 4, or 5 second pulses repeated 1, 2, 3, 4, or 5 times in low speed. In some embodiments, the egg chambers are isolated by fly maceration in the electric liquefier with 2 second pulses repeated 3 times in low speed;
- iii) Filtrating the fly homogenate through a mesh placed over a cup. Isolated egg chambers pass through the mesh and 55 unopened flies and debris are retained in the mesh. In some embodiments, the cup is a glass cup. The mesh may be made of steel, nylon, popypropylene or other suitable materials, used alone or in combination. On some embodiments, the pore size of the mesh is 200 to 500 µm. In some embodiments, the pore size of the mesh is about 200, 250, 300, 350, 400, 450 or 500 µm. In some embodiments, the a pore size of the mesh is 250 µm;
- iv) Repeating the maceration process with unopened flies retained in the mesh using the dissection medium;
- v) Pooling the egg chambers by repeating filtration using a new/clean mesh;

24

- vi) Leaving the egg chambers to settle and removing the dissection medium. In some embodiments, the egg chambers are left to settle for 1 to 10 minutes. In some embodiments, the egg chambers are left to settle for about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 minutes. In some embodiments, the egg chambers are left to settle for 5 minutes. In some embodiments, the dissection medium is removed by decanting or aspirating with a manual pipette or a vacuum pump;
- vii) A residual volume is left and egg chambers are transferred to tubes. In some embodiments, the residual volume is from 50 to 150 mL. In some embodiments, the residual volume is about 50, 100, or 150 mL. In some embodiments, the residual volume is 100 mL. In some embodiments, the tubes are conical tubes; and
- 15 viii) Enriching the egg chambers through serial rinsing steps:
 - a) Leaving egg chambers to settle and aspirating the dissection medium until a residual volume is left. In some embodiments, the egg chambers are left to settle for 1 to 10 minutes. In some embodiments, the egg chambers are left to settle for about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 minutes. In some embodiments, the egg chambers are left to settle for 5 minutes. In some embodiments, the dissection medium is aspirated until 1 mL to 10 mL residual volume is left. In some embodiments, the dissection medium is aspirated until about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mL residual volume is left. In some embodiments, the dissection medium is aspirated until 5 mL residual volume is left;
 - b) Rinsing the egg chambers by adding up to 10 to 20 mL of dissection medium to the tubes. In some embodiments, about 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 mL of dissection medium is added to the tubes;
 - c) Leaving the egg chambers to settle, and aspirating the dissection medium is aspirated until an amount of dissection medium is left. In some embodiments, the egg chambers are left to settle for 1 to 10 minutes. In some embodiments, the egg chambers are left to settle for about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 minutes. In some embodiments, the egg chambers are left to settle for 5 minutes. In some embodiments, the dissection medium is aspirated until 1 mL to 10 mL is left. In some embodiments, the dissection medium is aspirated until about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mL is left. In some embodiments, the dissection medium is aspirated until 1 mL is left: and
 - d) Adding clean dissection medium to the tubes and rapidly transferring the egg chambers to a tray.

Compound Treatment

In some embodiments of the invention which relate to contacting dissected egg chambers with a compound, dissected egg chambers may be transferred to a tube after dissection. In some embodiments, the growth media containing the egg chamber may be replaced to remove dissection detritus. In some embodiments, the egg chambers are contacted with a compound while still within an ovariole, in some embodiments, the egg chambers are removed from the ovarioles and then contacted with a compound. A compound may be added to the growth media in which the egg chamber is already soaked, or may be added in new growth media which replaces the growth media which does not contain the compound. In some embodiments, the egg chamber is soaked in less than 200 µL of incubation medium. In some embodiments, the egg chamber is soaked in more than 200 μL of incubation medium. In some embodiments, the egg chamber is soaked in 200, 225, 250, 275, or 300 µL of incubation medium. The egg chamber may be soaked in growth medium which contains the compound at a temperature of 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, or 30° C. In preferred embodiments, the egg chamber is soaked in incubation medium at a temperature of 25° C. The egg chamber may be soaked in incubation medium for a period lasting from 90 minutes to 6 hours or for a period of about 0.5, 1, 1.5, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, or 5 6 hours.

After an egg chamber is contacted with a compound, the egg chamber may be fixed, using chemical treatments such as paraformaldehyde, methanol, or others. Alternatively, the egg chamber may be analyzed, or processed for analysis directly, 10 without being fixed.

In some embodiments of the invention which relate to contacting dissected egg chambers with a compound, dissected egg chambers may be transferred to several wells of a microwell plate after dissection. For example, 100-200 µL of 15 the egg chamber/dissection medium mixture may be transferred to wells of a microwell plate. The microwell plate may have 48, 96, 384 wells or more and may or may not have an optical bottom and black, white or transparent walls. After transfer to a microwell plate, the dissection medium may be 20 opmental stages 1 to 11 as defined in the field, e.g. in Sullivan aspirated, leaving a controlled volume. In some embodiments, the controlled volume is 50 to 250 μL. In some embodiments, the controlled volume is about 50, 100, 150, 200, or 250 μL. In some embodiments, the controlled volume is 100 µL. The drug, appropriately diluted in suitable growth 25 medium may then be added to the microwell containing the egg chambers. In some embodiments, a volume of 50-500 μL of the drug appropriately diluted in suitable growth medium is added. In some embodiments, a volume of about 50, 100, 150, 200, 250, 300, 400, or 500 μL of the drug appropriately 30 diluted in suitable growth medium is added. In some embodiments, a volume of about 100 μL of the drug appropriately diluted in suitable growth medium is added. Non-limiting examples of suitable growth mediums are Shields and Sang M3 insect medium, Schneider's medium and others, all of 35 which may or may not be supplemented with any combination of fetal bovine serum, serum free supplements, insulin and/or other supplements. The egg chambers may then be incubated at 20-30° C., or about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30° C. In some embodiments, the egg chambers are 40 incubated at 25° C. In some embodiments, incubation times may range from 1 h to 6 h. In some embodiments, the incubation time is for a period of about 0.5, 1, 1.5, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, or 6 hours. After an egg chamber is contacted with a compound, the egg chamber may be fixed, using chemical 45 treatments such as paraformaldehyde, methanol, or others. Alternatively, the egg chamber may be analyzed, or processed for analysis directly, without being fixed. The egg chambers may be kept in the microwell plate with or without standard mountants and anti-fading products.

Some embodiments of the invention relate to contacting the egg chamber with multiple compounds at once. Therefore, the incubation medium may contain multiple compounds which are being tested for biological activity simultaneously. The use of incubation medium which contains 55 more than one compound allows for higher throughput processes of preparing information that identifies a compound as a cancer drug candidate. In embodiments in which an egg chamber is contacted with more than one compound, and where there is a difference between the egg chamber which is 60 contacted with more than one compound and an egg chamber not contacted with the compounds, it is necessary to subsequently test each of the compounds separately. Thus, the invention provides processes for first testing multiple compounds at once, and if a positive result is obtained in the first 65 test, to then perform subsequent tests which evaluate each of the compounds that were tested together in the first test indi26

vidually to determine which compound or compounds has biological activity or is a cancer drug candidate. In some embodiments, 2, 3, 4, 5, 6, 7, 8, 9, or 10 compounds may be tested at once in the first test.

Analysis

After an egg chamber is contacted with a compound, the egg chamber may be processed for analysis. In some embodiments, an egg chamber that has been contacted with a compound is analyzed on a slide. The egg chamber may be transferred to a slide in incubation medium. Alternatively, the incubation medium may be replaced with growth medium, so that the egg chamber is transferred to a slide in growth medium. In some embodiments, the egg chamber may be mounted in a manner suitable for observation. In some cases, egg chambers are immersed in mounting media which may or may not polymerize and may or may not contain chemical agents to reduce signal fading.

Egg chambers may be contacted with a compound at develet al., ed. Drosophila Protocols. 2000; Cold Spring Harbor Laboratory Press, ISBN 978-087969586-6; Horne-Badovinac and Bilder, 2005; and Baston and St Johnston, 2008, the contents of each of which are hereby incorporated by reference. Egg chambers may be contacted with a compound at stage 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, or any combination thereof. Additionally, determining whether there is a difference between an egg chamber contacted with a compound, and an egg chamber not contacted with a compound may be conducted at any stage that is concurrent with, or that follows a stage in which the egg chamber is contacted with the compound.

A suitable microscope set-up may be used to score egg chambers for having healthy nurse cells or oocytes, and for differences between an egg chamber contacted with a compound and an egg chamber not contacted with the compound. In embodiments which comprise a fluorescent, phosphorescent, or otherwise luminescent label or fusion protein, microscopy may be used to determine the quantity, quality, and/or distribution of label or fusion protein in egg chambers. In some embodiments, digital images of egg chambers may be recorded. In some embodiments, digital images are recorded either by the operator or automatically using a suitable microscope and software. In some embodiments of the invention, the egg chamber is incubated, stained, or otherwise contacted with a label, such that the label becomes attached to a particular protein within the egg chamber, before analysis of the egg chamber is performed. In some embodiments, egg chambers are scored for having healthy germ cells and fluorescence quantity, quality and distribution in the apical part of the follicular epithelium using a suitable microscope set-up. Where other labeling systems are used, suitable experimental steps may be used.

In some embodiments, a positive compound is identified where healthy egg chambers have altered signal quality, quantity or distribution.

In some embodiments, identification can be made by the operator or using a suitable/tailor-made software of analysis. In some embodiments, a compound is identified to have biological activity when an egg chamber contacted with the compound has increased cell death and/or altered label or fusion protein signal quality, quantity, or distribution, compared to an egg chamber not contacted with the compound. In some embodiments, a compound is identified to be a cancer drug candidate when an egg chamber contacted with the compound does not have increased cell death, but has altered

label or fusion protein signal quality, quantity, or distribution, compared to an egg chamber not contacted with the compound.

Compositions

According to another aspect of the invention, there is provided the use of a cancer drug candidate in the manufacture of a medicament for the treatment of cancer, where the medicament is formulated to deliver a dosage of the cancer drug candidate to a subject.

General techniques and compositions for making dosage forms useful in the present invention are described in the following references: 7 Modern Pharmaceutics, Chapters 9 and 10 (Banker & Rhodes, Editors, 1979); Pharmaceutical Dosage Forms: Tablets (Lieberman et al., 1981); Ansel, Introduction to Pharmaceutical Dosage Forms 2nd Edition (1976); Remington's Pharmaceutical Sciences, 17th ed. (Mack Publishing Company, Easton, Pa., 1985); Advances in Pharmaceutical Sciences (David Ganderton, Trevor Jones, Eds., 1992); Advances in Pharmaceutical Sciences Vol 7. (David 20 Ganderton, Trevor Jones, James McGinity, Eds., 1995); Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms (Drugs and the Pharmaceutical Sciences, Series 36 (James McGinity, Ed., 1989); Pharmaceutical Particulate Carriers: Therapeutic Applications: Drugs and the Pharma- 25 ceutical Sciences, Vol 61 (Alain Rolland, Ed., 1993); Drug Delivery to the Gastrointestinal Tract (Ellis Horwood Books in the Biological Sciences. Series in Pharmaceutical Technology; J. G. Hardy, S. S. Davis, Clive G. Wilson, Eds.); Modern Pharmaceutics Drugs and the Pharmaceutical Sciences Vol. 30 40 (Gilbert S. Banker, Christopher T. Rhodes, Eds.). The references in their entireties are hereby incorporated by reference into this application.

This invention will be better understood by reference to the Experimental Details which follow, but those skilled in the art will readily appreciate that the specific experiments detailed are only illustrative of the invention as described more fully in the claims which follow thereafter.

EXPERIMENTAL DETAILS

Example 1

Manual Soaking of Egg Chambers

Fly Culture

1-3 day-old female flies which express a fusion protein comprising Par6 fused at the C-terminus to AcGFP (Par6-AcGFP; SEQ ID NO: 11) under the control of the endogenous Par6 promoter were incubated with males for 1-2 days in 50 bottles or vials containing fly food and yeast ad libitum. The nucleic acid sequence of Par6-AcGFP, including all "natural" control elements, is set forth as SEQ ID NO: 10.

Fly Preparation

Females were selected using a $\rm CO_2$ pad, and then sacrificed 55 by decapitation. Decapitated flies were then transferred to a dish which was kept on ice until dissection.

Dissection

The ovaries of 1-10 flies were removed for each treatment and kept in 100-200 μL growth medium. Ovarioles were 60 carefully separated and prepared for drug treatment. Drug Treatment

The egg-chambers were transferred to a tube and their medium, which contained dissection detritus, was removed. At least 200 μ L of new growth medium containing a compound to be tested was then added for 90 minutes to 6 h. Egg chambers were then processed for analysis directly.

28

Mounting for Microscope Analysis

Egg chambers were mounted onto a microscope slide for observation.

Result Analysis

Suitable egg chambers (stage 7) were scored for having healthy germ cells as well as for the intensity and distribution of Par6-AcGFP in the apical part of the follicular epithelium using fluorescence microscopy. Digital images of the egg chambers were recorded.

Egg chambers that were treated with compounds and that had altered GFP signal quantity and/or distribution compared to untreated egg chambers, are those that identified the compounds with which they were contacted as being cancer drug candidates.

Example 2

Medium Scale Soaking of Egg Chambers

Purpose

Extension of the soaking of egg chambers protocol to a semi-automated format for medium scale of compound analysis.

Compounds may be routinely analyzed with medium scale soaking of egg chambers and then confirmed by low scale/manual format.

As for the low scale soaking protocol exemplified in Example 1, the medium scale soaking protocol consists of fly culture, fly preparation, dissection, drug treatment, label processing, preparation for analysis and analysis. Standard culture and preparation methods are used as described in many sources, including Theurkauf, W E, Chapter 25, Methods in Cell Biology Volume 44 (1994) Lawrence S. B. Goldstein and Eric A. Fyrberg, ISBN 978-0-12-564145-6; Ashburner, M. et al, *Drosophila*. A laboratory handbook. (1989), Cold Spring Harbor Laboratory Press ISBN, 0-87969-321-5 and W. Sullivan, et al., ed., *Drosophila* Protocols. (2000) Cold Spring Harbor Laboratory Press, ISBN 978-087969586-6, the entire contents of each of which are hereby incorporated herein by reference.

40 Fly Culture

1-3 day-old females are incubated with males for 1 to 2 days in bottles/vials containing fly food and yeast ad libitum.

Fly Preparation

A number of female flies suitable for the number of compounds is selected to analyze in the CO₂ pad. In one non-limiting example, 800 female flies are selected for 40 compounds.

Dissection

Flies are transferred to an electric liquefier filled with up to 250 mL of dissection medium. Suitable dissection mediums include Shields and Sang M3 insect medium, Schneider's medium, Robb's medium (Theurkauf, W E, Chapter 25, Methods in Cell Biology Volume 44 (1994) Lawrence S. B. Goldstein and Eric A. Fyrberg, ISBN 978-0-12-564145-6) and others, all of which may or may not be supplemented with any combination of fetal bovine serum, albumin and/or other supplements;

Egg chambers are isolated by fly maceration in the electric liquefier with 2 second pulses repeated 3 times at low speed;

The fly homogenate is filtrated through a mesh placed over a glass cup. Isolated egg chambers pass through the mesh and unopened flies and debris are retained in the mesh. The mesh can be made of steel, nylon, popypropylene or other suitable materials, used alone or in combination, with a pore size of 250 µm;

The maceration process is repeated with unopened flies retained in the mesh using the dissection medium;

Egg chambers are pooled by repeating filtration using a new/clean mesh;

Egg chambers are left to settle for 5 minutes and dissection medium is removed by decanting or aspirating with a manual pipette or a vacuum pump;

A 100 mL residual volume is left and egg chambers are transferred to conical tubes; and

Egg chambers are enriched through serial rinsing steps:

Egg chambers are left to settle for 5 minutes and dissection medium aspirated until 5 mL residual volume is left:

Egg chambers are rinsed by adding up to 10-20 mL of 15 dissection medium to the conical tubes;

Egg chambers are left to settle for 5 minutes, and dissection medium is aspirated until 1 mL is left; and

Clean dissection medium is added to the tubes and egg $_{20}$ chambers are rapidly transferred to a tray.

Drug Treatment

 $100\mbox{-}200~\mu L$ of the egg chamber/dissection medium mixture is transferred to several wells of a microwell plate. The microwell plate can have 48, 96, 384 wells or more 25 and may or may not have an optical bottom and black, white or transparent walls;

The dissection medium is aspirated, leaving a controlled volume of 100 μL;

100 μL of the drug appropriately diluted in suitable growth medium is added. Suitable growth medium include Shields and Sang M3 insect medium, Schneider's medium and others, all of which may or may not be supplemented with any combination of fetal bovine serum, serum free supplements, insulin and/or other supplements;

The egg chambers are incubated at 25° C. Incubation times can range from 1 h to 6 h; and

Egg chambers may be fixed, using chemical treatments 40 such as paraformaldehyde, methanol or others, or processed directly.

Label Processing

Where required, egg chambers are processed using standard procedures to detect the signal in the labeling method used.

Preparation for Analysis

Egg chambers are kept in the microwell with or without standard mountants and anti-fading products.

Result Analysis

Suitable egg chambers (stage 1 to 11, staged as is the convention in the field, e.g. W. Sullivan, et al., ed., Drosophila Protocols. (2000) Cold Spring Harbor Laboratory Press, ISBN 978-087969586-6) are scored for having healthy germ cells and fluorescence quantity, quality and distribution in the apical part of the follicular epithelium using a suitable microscope set-up. Where other labeling systems are used, suitable experimental steps are used.

Digital images are recorded either by the operator or automatically using a suitable microscope and software.

A positive compound is identified where healthy egg chambers have altered signal quality, quantity or distri- 65 bution. Identification can be made by the operator or using a suitable/tailor-made software of analysis.

30

Example 3

Injection of Embryos

Fly Preparation

2-3 day-old flies which express Par6-AcGFP under the control of the endogenous Par6 promoter and an apple juice/ agar substrate plate are used to prepare pots for egg laying. Flies are allowed to adapt to the pots for a minimum of 24 h. 10 Embryo Laying

On the day of the experiment, the first apple juice/agar substrate plate is replaced with a second apple juice/agar substrate plate. After 1 h the second apple juice/agar substrate plate is replaced with another apple juice/agar substrate plate which is used to collect additional embryos. Apple juice/agar substrate plates are continuously replaced as more embryos were collected each hour until the desired number of embryos are collected. Once an apple juice/agar substrate plate containing embryos is removed, it is incubated at 25° C. for 50-60 minutes.

Embryo Harvesting and Alignment

A basket strainer is placed in a petri dish which is contains 0.1% Tween-2/H₂O. Each embryo is then harvested from the apple juice/agar plate with a paint brush that is wet with 0.1% Tween-20/H₂O and then added to the basket. The 0.1% Tween-20/H₂O in the petri dish is then discarded and replaced with 50% bleach in H₂O to remove the chorions of embryos in the basket. The embryos are incubated in the 50% bleach solution for about 1.5 minutes, after which they are washed by replacing the 50% bleach solution with H₂O. The H₂O is replaced with new H₂O at least 4 times to wash the embryos. The basket strainer is then removed from the petri dish, and the bottom of the basket is dried with paper to facilitate removal of the embryos with a spatula. The embryos are then placed on a small piece of agar and about 50 embryos are aligned with their posterior poles pointing in the same direction. A slide is prepared with tape and aligned over the embryos so that they stick to the tape. The embryos are then desiccated for 4 minutes at 25° C. in a petri dish which has been filled with silica gel.

Injection of Embryos

A needle that comes to a closed point at its tip is filled with a solution comprising a compound to be tested for biological activity, and the tip of the needle is broken to provide an opening through which the solution may be injected. The drop size of the solution which exits the needle during each injection is adjusted with a graticle in order to be about 420 pL of solution. The embryos are then injected through their posterior poles.

Analysis

Development of the treated embryos is followed for up to 4 h, and they are scored for developmental differences, cellularization differences and altered amounts of cell death compared to untreated embryos. The AcGFP signal in the embryos is traced for location and intensity. Results

Embryos that are treated with compounds and that have altered GFP signal quantity and/or distribution compared to untreated embryos are those that identify the compounds with 60 which they were injected as being cancer drug candidates.

Example 4

Cancer Drug Candidate Validation

Compounds that are identified as cancer drug candidates using processes of the invention are evaluated for efficacy in

appropriate mammalian models. Compounds identified as cancer drug candidates using the process described in Example 1, 2, or 3 are administered to groups of mice, which each have a carcinoma. Mice are treated with the drug candidates until they are sacrificed for analysis or die from the carcinoma. A proportion of the cancer drug candidates which are tested in vivo are found to effectively inhibit tumor growth in the mice. Furthermore, a proportion of the cancer drug candidates are found to effectively inhibit cancer cell survival in the Additionally, a proportion of the cancer drug candidates are found to effectively inhibit cancer metastasis in the mice.

When cancer drug candidates identified using the process described in Example 1, 2, or 3 are compared to cancer drug candidates identified using in vitro processes, the proportion of the cancer drug candidates which are effective at inhibiting tumor growth while being well tolerated in mice is greater for those identified using the process described in Example 1, 2, or 3 than those identified using an analogous in vitro screening process. Additionally, the proportion of the cancer drug 20 candidates which are effective at killing cancer cells while being well tolerated in mice is greater for those identified using the process in Example 1, 2, or 3 than those identified using an analogous in vitro screening process. Furthermore, the proportion of the cancer drug candidates which are effec- 25 tive at reducing the metastasis cancer cells while being well tolerated in mice is greater for those identified using the process in Example 1, 2, or 3, than those identified using an analogous in vitro screening process.

When cancer drug candidates identified using the process described in Example 1, 2, and 3 are compared to cancer drug candidates identified using an analogous in vivo process which uses a D. melanogaster which was genetically modified to have the reduced or increased function of a protein ("traditional *Drosophila* screening process"), the proportion of the cancer drug candidates which are effective at inhibiting tumor growth while being well tolerated in mice is greater for those identified using the process described in Example 1, 2, and 3 than those identified using an analogous traditional 40 *Drosophila* screening process. Additionally, the proportion of the cancer drug candidates which are effective at killing cancer cells while being well tolerated in mice is greater for those identified using the process in Example 1, 2, or 3 than those identified using an analogous traditional Drosophila screen- 45 ing process. Furthermore, the proportion of the cancer drug candidates which are effective at reducing the metastasis cancer cells while being well tolerated in mice is greater for those identified using the process in Example 1, 2, or 3, than those identified using an analogous traditional Drosophila 50 screening process.

Discussion

The invention provides screening processes that identify cancer drug candidates with lower background effects and higher reliability than other *D. melanogaster*-based screening 55 processes. One advantageous aspect of the subject invention is that the *D. melanogaster* embryos and egg chambers of the invention are minimally genetically modified. The *D. melanogaster* embryos and egg chambers of the invention are wild-type with the exception that they may express a reporter 60 polypeptide fused to an endogenous protein. Aspects of the invention do not rely on mutants or flies that are modified to have the significant gain or loss of function of any gene, and therefore their cells behave normally. The approaches disclosed herein allow for cleaner, more reliable cancer drug 65 candidate identification than other *D. melanogaster*-based screens.

32

The D. melanogaster Egg Chamber

Oogenesis requires many cellular processes, including cell cycle control, cell fate specification, cell polarization, and epithelial morphogenesis (Bastock and St Johnston, 2008). The Drosophila egg chamber comprises both germ and somatic cells which signal to each other and undergo profound cellular changes throughout oogenesis. Many of the morphological changes observed during oogenesis occur in the follicular epithelium, the portion of the egg chamber which produces yolk and eggshell components of the egg, and which also signals to the germ cells to help determine future embryonic axes (Horne-Badovinac and Bilder, 2005). Surprisingly, as disclosed herein, a compound's effects on cellular processes observed within the D. melanogaster egg chamber are a reliable predictor of the compound's ability to perturb cancer cell proliferation, metastasis, and survival in mammals.

Par6

Par6 regulates cell polarity and fate determination during egg chamber and embryonic development in D. melanogaster (Petronczki and Knoblich, 2000). As a PB1 domain protein that links aPKCs to Rac1, Par6, has been suggested to play a role in oncogenic PKCt signaling (Fields et al. 2007; Brumby and Richardson, 2005). Fields et al. 2007 purported to describe in vitro screens for compounds which disrupt the interaction of the PB1-PB1 domain interaction between PKC1 and Part, however, Fields et al. did not teach or suggest conducting in vivo drug screens which employed Part in any capacity, in D. melanogaster or otherwise. Furthermore, aspects of the subject invention relate to the identification of cancer drug candidates that alter Par6 function or expression in cells that behave normally within an in vivo context. Surprisingly, the ability of a compound to directly or indirectly alter the normal expression and/or function of Par6, or the behavior of cells that express Par6 within the epithelium of an almost completely wild-type D. melanogaster embryo or egg chamber identifies that compound as a cancer drug candidate.

REFERENCES

- 1. Bastock and St. Johnston, *Drosophila* oogenesis. Current Biology, 2008, 18(23):1082-1087.
- Bier E., *Drosophila*, the golden bug, emerges as a tool for human genetics, Nature Reviews Genetics (1 Jan. 2005) 6, 9-23.
- Brumby and Richardson, Using *Drosophila melanogaster* to Map Human Cancer Pathways. Nature Reviews, 2005, 5:326-639.
- Fields et al., Targeting the oncogenic protein kinase Ct signaling pathway for the treatment of cancer. Biochemical Society Transactions, 2007, 35:996-1000.
- Horne-Badovinac and Bilder, Mass Transit: Epithelial Morphogenesis in the *Drosophila* Egg Chamber. Developmental Dynamics, 2005, 232:559-574.
- Keserü and Makara, Hit discovery and hit-to-lead approaches. Drug Discovery Today, 2006, 11: 741-748.
- Petronczki and Knoblich, DmPar-6 directs epithelial polarity and asymmetric cell division of neuroblasts in *Droso*phila. Nature Cell Biology, 2001, 3:43-49.
- 65 8. Wirtz-Peitz et al., Linking Cell cycle to Asymmetric Division: Aurora-A Phosphorylates the Par complex to Regulate Numb Localization. Cell, 2008, 135:161-173.

SEQUENCE LISTING

-160> NII	MDED OF	CEO ID	MOG.	10								
<160> NU <210> SE <211> LE <212> TY	Q ID NO NGTH: 60	1	NOS:	13								
<213> OR		Drosoph	ila m	melar	nogas	ster						
<400> SE	QUENCE :	1										
Met Gln 1	Lys Met	Pro Ser 5	Gln	Ile	Leu	Asn 10	Asp	Gly	Ser	Ser	Val 15	Thr
Leu Ser	Ser Ala 20	Ser Met	Asn	Met	Ala 25	Asn	Thr	Pro	Asn	Ser 30	Ile	Thr
Val Lys	Thr Ala 35	Tyr Asn	Gly	Gln 40	Ile	Ile	Ile	Thr	Thr 45	Ile	Asn	Lys
Asn Ile 50	Ser Tyr	Glu Glu	Leu 55	Cys	Tyr	Glu	Ile	Arg 60	Asn	Ile	Cys	Arg
Phe Pro 65	Leu Asp	Gln Pro	Phe	Thr	Ile	Lys	Trp 75	Val	Asp	Glu	Glu	Asn 80
Asp Pro	Cys Thr	Ile Ser 85	Thr	Lys	Met	Glu 90	Leu	Asp	Glu	Ala	Ile 95	Arg
Leu Tyr	Glu Met 100	Asn Phe	Asp	Ser	Gln 105	Leu	Val	Ile	His	Val 110	Phe	Pro
Asn Val	Pro Gln 115	Ala Pro	Gly	Leu 120	Ser	Cys	Asp	Gly	Glu 125	Asp	Arg	Ser
Ile Tyr 130	Arg Arg	Gly Ala	Arg 135	Arg	Trp	Arg	Lys	Leu 140	Tyr	Arg	Val	Asn
Gly His 145	Ile Phe	Gln Ala 150	rys	Arg	Phe	Asn	Arg 155	Arg	Ala	Phe	Cys	Ala 160
Tyr Cys	Gln Asp	Arg Ile 165	Trp	Gly	Leu	Gly 170	Arg	Gln	Gly	Phe	Lys 175	CÀa
Ile Gln	Cys Lys 180	Leu Leu	Val	His	Lys 185	Lys	Сла	His	Lys	Leu 190	Val	Gln
Lys His	Cys Thr 195	Asp Gln	Pro	Glu 200	Pro	Leu	Val	Lys	Glu 205	Arg	Ala	Glu
Glu Ser 210	Ser Asp	Pro Ile	Pro 215	Val	Pro	Leu	Pro	Pro 220	Leu	Pro	Tyr	Glu
Ala Met 225	Ser Gly	Gly Ala 230	Glu	Ala	Cys	Glu	Thr 235	His	Asp	His	Ala	His 240
Ile Val	Ala Pro	Pro Pro 245	Pro	Glu	Asp	Pro 250	Leu	Glu	Pro	Gly	Thr 255	Gln
Arg Gln	Tyr Ser 260	Leu Asn	Asp	Phe	Glu 265	Leu	Ile	Arg	Val	Ile 270	Gly	Arg
Gly Ser	Tyr Ala 275	Lys Val	Leu	Met 280	Val	Glu	Leu	Arg	Arg 285	Thr	Arg	Arg
Ile Tyr 290	Ala Met	Lys Val	Ile 295	Lys	Lys	Ala	Leu	Val 300	Thr	Asp	Asp	Glu
Asp Ile 305	Asp Trp	Val Gln 310		Glu	Lys	His	Val 315	Phe	Glu	Thr	Ala	Ser 320
Asn His	Pro Phe	Leu Val 325	Gly	Leu	His	Ser 330	Cys	Phe	Gln	Thr	Pro 335	Ser
Arg Leu	Phe Phe 340	Val Ile	Glu	Phe	Val 345	Arg	Gly	Gly	Asp	Leu 350	Met	Tyr
His Met	Gln Arg 355	Gln Arg	Arg	Leu 360	Pro	Glu	Glu	His	Ala 365	Arg	Phe	Tyr

-continued

Ala Ala Glu Ile Ser Leu Ala Leu Asn Phe Leu His Glu Lys Gly Ile 375 Ile Tyr Arg Asp Leu Lys Leu Asp Asn Val Leu Leu Asp His Glu Gly His Ile Lys Leu Thr Asp Tyr Gly Met Cys Lys Glu Gly Ile Arg Pro Gly Asp Thr Thr Ser Thr Phe Cys Gly Thr Pro Asn Tyr Ile Ala Pro Glu Ile Leu Arg Gly Glu Asp Tyr Gly Phe Ser Val Asp Trp Trp Ala 435 440 445 Leu Gly Val Leu Leu Tyr Glu Met Leu Ala Gly Arg Ser Pro Phe Asp Leu Ala Gly Ala Ser Glu Asn Pro Asp Gln Asn Thr Glu Asp Tyr Leu Phe Gln Val Ile Leu Glu Lys Thr Ile Arg Ile Pro Arg Ser Leu Ser Val Arg Ala Ala Ser Val Leu Lys Gly Phe Leu Asn Lys Asn Pro Ala 500 505 510 Asp Arg Leu Gly Cys His Arg Glu Ser Ala Phe Met Asp Ile Val Ser 520 His Pro Phe Phe Lys Asn Met Asp Trp Glu Leu Leu Glu Arg Lys Gln 535 Val Thr Pro Pro Phe Lys Pro Arg Leu Asp Ser Asp Arg Asp Leu Ala 550 555 Asn Phe Pro Pro Glu Phe Thr Gly Glu Ala Val Gln Leu Thr Pro Asp Asp Asp His Val Ile Asp Asn Ile Asp Gln Ser Glu Phe Glu Gly Phe 585 Glu Tyr Val Asn Pro Leu Leu Met Ser Leu Glu Asp Cys Val 600 <210> SEQ ID NO 2 <211> LENGTH: 1520 <212> TYPE: PRT <213 > ORGANISM: Drosophila melanogaster <400> SEQUENCE: 2 Met Phe Asp Val Pro Pro Lys Cys Pro Ala Leu Ala Asn Lys Leu Gly Gly Leu Phe Gly Trp Arg His Thr Tyr Lys Val Ala Ala Lys Gln Glu Gly Ile Pro His Gly Gln Leu His Lys Ser Tyr Ser Leu Thr Leu Pro Lys Arg Pro Pro Ser Pro Ser Thr Tyr Ser Cys Val Lys Pro Asp Ser Trp Val Thr Val Thr His Leu Gln Thr Gln Ser Gly Ile Leu Asp Pro Asp Asp Cys Val Arg Asp Val Ala Asp Asp Arg Glu Gln Ile Leu Ala His Phe Asp Asp Pro Gly Pro Asp Pro Gly Val Pro Gln Gly Gly 105 Asp Gly Ala Ser Gly Ser Ser Ser Val Gly Thr Gly Ser Pro Asp Ile 120 Phe Arg Asp Pro Thr Asn Thr Glu Ala Pro Thr Cys Pro Arg Asp Leu 135

Ser 145	Thr	Pro	His	Ile	Glu 150	Val	Thr	Ser	Thr	Thr 155	Ser	Gly	Pro	Met	Ala 160
Gly	Leu	Gly	Val	Gly 165	Leu	Met	Val	Arg	Arg 170	Ser	Ser	Asp	Pro	Asn 175	Leu
Leu	Ala	Ser	Leu 180	Lys	Ala	Glu	Gly	Ser 185	Asn	Lys	Arg	Trp	Ser 190	Ala	Ala
Ala	Pro	His 195	Tyr	Ala	Gly	Gly	Asp 200	Ser	Pro	Glu	Arg	Leu 205	Phe	Leu	Asp
ГÀа	Ala 210	Gly	Gly	Gln	Leu	Ser 215	Pro	Gln	Trp	Glu	Glu 220	Asp	Asp	Asp	Pro
Ser 225	His	Gln	Leu	ГЛа	Glu 230	Gln	Leu	Leu	His	Gln 235	Gln	Gln	Pro	His	Ala 240
Ala	Asn	Gly	Gly	Ser 245	Ser	Ser	Gly	Asn	His 250	Gln	Pro	Phe	Ala	Arg 255	Ser
Gly	Arg	Leu	Ser 260	Met	Gln	Phe	Leu	Gly 265	Asp	Gly	Asn	Gly	Tyr 270	Lys	Trp
Met	Glu	Ala 275	Ala	Glu	Lys	Leu	Gln 280	Asn	Gln	Pro	Pro	Ala 285	Gln	Gln	Thr
Tyr	Gln 290	Gln	Gly	Ser	His	His 295	Ala	Gly	His	Gly	Gln 300	Asn	Gly	Ala	Tyr
Ser 305	Ser	Lys	Ser	Leu	Pro 310	Arg	Glu	Ser	Lys	Arg 315	Lys	Glu	Pro	Leu	Gly 320
Gln	Ala	Tyr	Glu	Ser 325	Ile	Arg	Glu	Lys	330	Gly	Glu	Met	Leu	Leu 335	Ile
Ile	Asn	Glu	Tyr 340	Gly	Ser	Pro	Leu	Gly 345	Leu	Thr	Ala	Leu	Pro 350	Asp	ГÀв
Glu	His	Gly 355	Gly	Gly	Leu	Leu	Val 360	Gln	His	Val	Glu	Pro 365	Gly	Ser	Arg
Ala	Glu 370	Arg	Gly	Arg	Leu	Arg 375	Arg	Asp	Asp	Arg	Ile 380	Leu	Glu	Ile	Asn
Gly 385	Ile	Lys	Leu	Ile	Gly 390	Leu	Thr	Glu	Ser	Gln 395	Val	Gln	Glu	Gln	Leu 400
Arg	Arg	Ala	Leu	Glu 405	Ser	Ser	Glu	Leu	Arg 410	Val	Arg	Val	Leu	Arg 415	Gly
Asp	Arg	Asn	Arg 420	Arg	Gln	Gln	Arg	Asp 425	Ser	Lys	Val	Ala	Glu 430	Met	Val
Glu	Val	Ala 435	Thr	Val	Ser	Pro	Thr 440	Arg	Lys	Pro	His	Ala 445	Ala	Pro	Val
Gly	Thr 450	Ser	Leu	Gln	Val	Ala 455	Asn	Thr	Arg	ГÀв	Leu 460	Gly	Arg	ГÀа	Ile
Glu 465	Ile	Met	Leu	ГÀа	Lys 470	Gly	Pro	Asn	Gly	Leu 475	Gly	Phe	Ser	Val	Thr 480
Thr	Arg	Asp	Asn	Pro 485	Ala	Gly	Gly	His	Cys 490	Pro	Ile	Tyr	Ile	Lys 495	Asn
Ile	Leu	Pro	Arg 500	Gly	Ala	Ala	Ile	Glu 505	Asp	Gly	Arg	Leu	Lys 510	Pro	Gly
Asp	Arg	Leu 515	Leu	Glu	Val	Asp	Gly 520	Thr	Pro	Met	Thr	Gly 525	Lys	Thr	Gln
Thr	Asp 530	Val	Val	Ala	Ile	Leu 535	Arg	Gly	Met	Pro	Ala 540	Gly	Ala	Thr	Val
Arg 545	Ile	Val	Val	Ser	Arg 550	Gln	Gln	Glu	Leu	Ala 555	Glu	Gln	Ala	Asp	Gln 560

-continued
-continued

Pro	Ala	Glu	Lys	Ser 565	Ala	Gly	Val	Ala	Val 570	Ala	Pro	Ser	Val	Ala 575	Pro
Pro	Ala	Val	Pro 580	Ala	Ala	Ala	Ala	Pro 585	Ala	Pro	Pro	Ile	Pro 590	Val	Gln
Lys	Ser	Ser 595	Ser	Ala	Arg	Ser	Leu 600	Phe	Thr	His	Gln	Gln 605	Gln	Ser	Gln
Leu	Asn 610	Glu	Ser	Gln	His	Phe 615	Ile	Asp	Ala	Gly	Ser 620	Glu	Ser	Ala	Ala
Ser 625	Asn	Asp	Ser	Leu	Pro 630	Pro	Ser	Ser	Asn	Ser 635	Trp	His	Ser	Arg	Glu 640
Glu	Leu	Thr	Leu	His 645	Ile	Pro	Val	His	Asp 650	Thr	Glu	Lys	Ala	Gly 655	Leu
Gly	Val	Ser	Val 660	ГÀа	Gly	ГÀа	Thr	Cys 665	Ser	Asn	Leu	Asn	Ala 670	Ser	Gly
Ser	Ser	Ala 675	Ser	Ser	Gly	Ser	Asn 680	Gly	Leu	Met	Lys	His 685	Asp	Gly	Asp
Leu	Gly 690	Ile	Phe	Val	Lys	Asn 695	Val	Ile	His	Gly	Gly 700	Ala	Ala	Ser	Arg
Asp 705	Gly	Arg	Leu	Arg	Met 710	Asn	Asp	Gln	Leu	Leu 715	Ser	Val	Asn	Gly	Val 720
Ser	Leu	Arg	Gly	Gln 725	Asn	Asn	Ala	Glu	Ala 730	Met	Glu	Thr	Leu	Arg 735	Arg
Ala	Met	Val	Asn 740	Thr	Pro	Gly	Lys	His 745	Pro	Gly	Thr	Ile	Thr 750	Leu	Leu
Val	Gly	Arg 755	Lys	Ile	Leu	Arg	Ser 760	Ala	Ser	Ser	Ser	Asp 765	Ile	Leu	Asp
His	Ser 770	Asn	Ser	His	Ser	His 775	Ser	His	Ser	Asn	Ser 780	Ser	Gly	Gly	Ser
Asn 785	Ser	Asn	Gly	Ser	Gly 790	Asn	Asn	Asn	Asn	Ser 795	Ser	Ser	Asn	Ala	Ser 800
Asp	Asn	Ser	Gly	Ala 805	Thr	Val	Ile	Tyr	Leu 810	Ser	Pro	Glu	Lys	Arg 815	Glu
Gln	Arg	CAa	Asn 820	Gly	Gly	Gly	Gly	Gly 825	Gly	Ser	Ala	Gly	Asn 830	Glu	Met
Asn	Arg	Trp 835	Ser	Asn	Pro	Val	Leu 840	Asp	Arg	Leu	Thr	Gly 845	Gly	Ile	CÀa
Ser	Ser 850	Asn	Ser	Ala	Gln	Pro 855	Ser	Ser	Gln	Gln	Ser 860	His	Gln	Gln	Gln
Pro 865	His	Pro	Ser	Gln	Gln 870	Gln	Gln	Gln	Gln	Arg 875	Arg	Leu	Pro	Ala	Ala 880
Pro	Val	Cys	Ser	Ser 885	Ala	Ala	Leu	Arg	Asn 890	Glu	Ser	Tyr	Tyr	Met 895	Ala
Thr	Asn	Asp	Asn 900	Trp	Ser	Pro	Ala	Gln 905	Met	His	Leu	Met	Thr 910	Ala	His
Gly	Asn	Thr 915	Ala	Leu	Leu	Ile	Glu 920	Asp	Asp	Ala	Glu	Pro 925	Met	Ser	Pro
Thr	Leu 930	Pro	Ala	Arg	Pro	His 935	Asp	Gly	Gln	His	Cys 940	Asn	Thr	Ser	Ser
Ala 945	Asn	Pro	Ser	Gln	Asn 950	Leu	Ala	Val	Gly	Asn 955	Gln	Gly	Pro	Pro	Ile 960
Asn	Thr	Val	Pro	Gly 965	Thr	Pro	Ser	Thr	Ser 970	Ser	Asn	Phe	Asp	Ala 975	Thr
Tyr	Ser	Ser	Gln	Leu	Ser	Leu	Glu	Thr	Asn	Ser	Gly	Val	Glu	His	Phe

			980				98	35				991)	
Ser		Asp 1	Ala I	Leu (Gly A		rg :	Ser I	Ile :	Ser (/ဒေး I ၁၀5	His I	His Ala
Ala	Leu 1010	Asp	Ala	Arg	Glu	Thr 1015	Gly	Thr	Tyr	Gln	Arg 1020	Asn	Lys	Lys
Leu	Arg 1025	Glu	Glu	Arg	Glu	Arg 1030		Arg	Arg	Ile	Gln 1035	Leu	Thr	Lys
Ser	Ala 1040	Val	Tyr	Gly	Gly	Ser 1045	Ile	Glu	Ser	Leu	Thr 1050	Ala	Arg	Ile
Ala	Ser 1055	Ala	Asn	Ala	Gln	Phe 1060	Ser	Gly	Tyr	Lys	His 1065	Ala	ГÀа	Thr
Ala	Ser 1070	Ser	Ile	Glu	Gln	Arg 1075	Glu	Thr	Gln	Gln	Gln 1080	Leu	Ala	Ala
Ala	Glu 1085	Ala	Glu	Ala	Arg	Asp 1090	Gln	Leu	Gly	Asp	Leu 1095	Gly	Pro	Ser
Leu	Gly 1100	Met	Lys	Lys	Ser	Ser 1105	Ser	Leu	Glu	Ser	Leu 1110	Gln	Thr	Met
Val	Gln 1115	Glu	Leu	Gln	Met	Ser 1120	Asp	Glu	Pro	Arg	Gly 1125	His	Gln	Ala
Leu	Arg 1130	Ala	Pro	Arg	Gly	Arg 1135	Gly	Arg	Glu	Asp	Ser 1140	Leu	Arg	Ala
Ala	Val 1145	Val	Ser	Glu	Pro	Asp 1150	Ala	Ser	Lys	Pro	Arg 1155	Lys	Thr	Trp
Leu	Leu 1160	Glu	Asp	Gly	Asp	His 1165	Glu	Gly	Gly	Phe	Ala 1170	Ser	Gln	Arg
Asn	Gly 1175	Pro	Phe	Gln	Ser	Ser 1180	Leu	Asn	Asp	Gly	Lys 1185	His	Gly	Cys
rys	Ser 1190	Ser	Arg	Ala	Lys	Lys 1195	Pro	Ser	Ile	Leu	Arg 1200	Gly	Ile	Gly
His	Met 1205	Phe	Arg	Phe	Gly	Lys 1210	Asn	Arg	Lys	Asp	Gly 1215	Val	Val	Pro
Val	Asp 1220	Asn	Tyr	Ala	Val	Asn 1225	Ile	Ser	Pro	Pro	Thr 1230	Ser	Val	Val
Ser	Thr 1235	Ala	Thr	Ser	Pro	Gln 1240	Leu	Gln	Gln	Gln	Gln 1245	Gln	Gln	Gln
Leu	Gln 1250	Gln	His	Gln	Gln	Gln 1255	Gln	Gln	Ile	Pro	Thr 1260	Ala	Ala	Leu
Ala	Ala 1265	Leu	Glu	Arg	Asn	Gly 1270	Lys	Pro	Pro	Ala	Tyr 1275	Gln	Pro	Pro
Pro	Pro 1280	Leu	Pro	Ala	Pro	Asn 1285	Gly	Val	Gly	Ser	Asn 1290	Gly	Ile	His
Gln	Asn 1295	Asp	Ile	Phe	Asn	His 1300	Arg	Tyr	Gln	His	Tyr 1305	Ala	Asn	Tyr
Glu	Asp 1310	Leu	His	Gln	Gln	His 1315	Gln	Gln	His	Gln	Ile 1320	Ser	Gly	Gly
Asp	Ser 1325	Thr	Thr	Ser	Ile	Ser 1330		Thr	Leu	Ser	Glu 1335	Ser	Thr	Leu
Glu	Cys 1340	Met	Arg	Gln	Gln	Val 1345		Arg	Gln	Arg	Ile 1350	Lys	Val	Glu
Ala	Glu 1355	Ser	Arg	Arg	His	Gln 1360	His	Tyr	His	Ser	Gln 1365	Arg	Ser	Ala
Arg	Ser 1370	Gln	Asp	Val	Ser	Met 1375	His	Ser	Thr	Ser	Ser 1380	Gly	Ser	Gln

Pro	Gly 1385		Leu	Ala	Gln	Pro 139		ln A	la G	ln S		Asn 1395	Gly	Val	Arg
Pro	Met 1400		Ser	Туг	Tyr	Glu 140		r G	lu T	hr V		Gln 1410	Gln	Gln	Arg
Val	Gly 1415		Ile	Lys	His	Ser 142		is S∈	er S	er S		Ala 1425	Thr	Ser	Ser
Ser	Ser 1430		Pro	Ile	e Asn	Val		ro H	is T	rp I	-	Ala 1440	Ala	Ala	Met
Asn	Gly 1445		Ser	Pro	Ala	. Ser 145		eu A	sn S	er S		Ala 1455	Arg	Ser	Arg
Gly	Pro 1460		· Val	Thi	Gln	Val		nr I	le A	rg G		Gln 1470	Ser	Ser	Gly
Gly	Ile 1475		Ala	His	Leu	. Leu 148		Ln G	ln H	is G		Gln 1485	Gln	Gln	Leu
Gln	Gln 1490		Gln	Pro	Thr	Tyr 149		ln Tl	nr V	al G		Lys 1500	Met	Ser	Gly
Pro	Ser 1505		Tyr	Gly	/ Ser	Ala 151		La G	ly s	er G		Pro 1515	His	Ala	Ser
Lys	Val 1520														
<211 <212	D> SE 1> LE 2> TY 3> OR	NGTH PE:	: 35 PRT	1	sophi	la m	nelar	nogai	ster						
< 400)> SE	QUEN	ICE :	3											
Met 1	Ser	Lys	Asn	Lys 5	Ile	Asn	Thr	Thr	Ser 10	Ala	Th	r Ala	a Ala	Ser 15	Asp
Thr	Asn		Ile 20	Glu	Val	Lys	Ser	Lys 25	Phe	Asp	Al	a Glu	ı Ph∈ 30	e Arg	Arg
Trp	Ser	Phe 35	Lys	Arg	Asn	Glu	Ala 40	Glu	Gln	Ser	Ph	e Ası 45	Lys	Phe	Ala
Ser	Leu 50	Ile	Glu	Gln		His 55	Lys	Leu	Thr	Asn	I1 60	e Glı	n Phe	e Leu	Ile
Leu 65	Tyr	Ile	Asp	Pro	Arg 70	Asp	Asn	Asp	Leu	Leu 75	Pr	o Ile	e Asr	a Asn	Asp 80
Asp	Asn	Phe	Gly	Arg 85	Ala	Leu	Lys	Thr	Ala 90	Arg	Pr	o Lei	ı Lev	Arg 95	Val
Ile	Val	Gln	Arg 100	ГÀа	Asp	Asp	Leu	Asn 105	Glu	Туг	Se	r Gly	/ Phe		Thr
Met	Lys	Pro 115	Arg	Asn	Leu	Ile	Gly 120	Ser	Ile	Leu	Me	t Gly 129		Thr	Pro
Val	Lys 130	Thr	Lys	Ala		Ser 135	Ile	Ser	Ile	Pro	Ні 14		Ph∈	e Arg	Gln
Val 145	Ser	Ala	Ile	Ile	Asp 150	Val	Asp	Ile	Val	Pro		u Thi	His	arg	Arg 160
Val	Arg	Leu	Leu	Lys 165	His	Gly	Ser	Asp	Lys 170		Le	u Gly	/ Phe	Tyr 175	Ile
				103											
Arg	Asp	Gly	Thr 180		Val	Arg	Val	Thr 185	Ala	Ser	Gl	y Lei	ı Glu 190	ı Lys	Gln
	_	-	180	Ser				185				-	190 ı Ala	ı Lys	Gln Ser

-continued

215 Glu Val Ala Gly Lys Thr Leu Asp Gln Val Thr Asp Met Met Val Ala 230 235 Asn Ser Ser Asn Leu Ile Ile Thr Val Lys Pro Ala Asn Gln Arg Thr Leu Thr Ser Thr His Arg Gly Ser Phe Ser Arg Asn Ser Gln Leu Ser Ser Gly Ser His His Thr Asn Asn Thr Asn Thr Ser Asp Glu Ile Glu His Asp Asp Gln Asp Asp Ile Val Asp Leu Thr Gly Val Thr Leu Asp Glu Ser Pro Thr Ser Thr Ser Ala Gly Asn His Asn His Gln Pro Pro Leu Ser Ser Pro Ser Ser His His Gln Gln Ala Ala Ser Asn Ala Ser Thr Ile Met Ala Ser Asp Val Lys Asp Gly Val Leu His Leu 345 <210> SEQ ID NO 4 <211> LENGTH: 191 <212> TYPE: PRT <213 > ORGANISM: Drosophila melanogaster <400> SEQUENCE: 4 Met Gln Thr Ile Lys Cys Val Val Val Asp Asp Gly Ala Val Gly Lys Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Lys Phe Pro Ser Glu Tyr 25 Val Pro Thr Val Phe Asp Asn Tyr Ala Val Thr Val Met Ile Gly Gly Glu Pro Tyr Thr Leu Gly Leu Phe Asp Thr Ala Gly Gln Glu Asp Tyr Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Val Cys Phe Ser Val Val Ser Pro Ser Ser Phe Glu Asn Val Lys Glu Lys Trp Val Pro Glu Ile Thr His His Cys Gln Lys Thr Pro Phe Leu Leu Val Gly Thr Gln Ile Asp Leu Arg Asp Glu Asn Ser Thr Leu Glu Lys 120 Leu Ala Lys Asn Lys Gln Lys Pro Ile Thr Met Glu Gln Gly Glu Lys Leu Ala Lys Glu Leu Lys Ala Val Lys Tyr Val Glu Cys Ser Ala Leu Thr Gln Lys Gly Leu Lys Asn Val Phe Asp Glu Ala Ile Leu Ala Ala 170 Leu Glu Pro Pro Glu Pro Thr Lys Lys Arg Lys Cys Lys Phe Leu <210> SEQ ID NO 5 <211> LENGTH: 1507 <212> TYPE: PRT <213> ORGANISM: Drosophila melanogaster <400> SEQUENCE: 5

Met Ser Thr Ser Val Gln Arg Met Ser Arg Ser Tyr His Cys Ile Asn

1				5					10					15	
Met	Ser	Ala	Thr 20	Pro	Gln	Ala	Gly	His 25	Leu	Asn	Pro	Ala	Gln 30	Gln	Gln
Thr	His	Gln 35	Gln	His	Lys	Arg	Lys 40	CAa	Arg	Asp	Leu	Gly 45	Arg	Arg	Leu
Ile	Pro 50	Ala	Arg	Leu	Leu	Leu 55	Gly	Val	Ile	Val	Ala 60	Ile	Ser	Leu	Leu
Ser 65	Pro	Ala	Leu	Ala	Leu 70	His	Ser	Pro	Pro	Asp 75	ГÀз	Asn	Phe	Ser	Gly 80
Asp	Asn	Arg	Lys	Pro 85	Ala	Phe	Lys	Asn	Gys	Ala	Gly	Tyr	Ala	Pro 95	Lys
Val	ГÀа	Glu	Glu 100	Gln	Pro	Glu	Asn	Thr 105	Tyr	Val	Leu	Thr	Val 110	Glu	Ala
Val	Asp	Pro 115	Asp	Pro	Asp	Gln	Val 120	Ile	Arg	Tyr	Ser	Ile 125	Val	Gln	Ser
Pro	Phe 130	Glu	Arg	Pro	ГÀа	Phe 135	Phe	Ile	Asn	Pro	Ser 140	Thr	Gly	Val	Ile
Phe 145	Thr	Thr	His	Thr	Phe 150	Asp	Arg	Asp	Glu	Pro 155	Ile	His	Glu	ГÀа	Phe 160
Val	Phe	Val	Thr	Val 165	Gln	Ala	Thr	Asp	Asn 170	Gly	Leu	Pro	Pro	Leu 175	Asp
Asp	Val	Сув	Thr 180	Phe	Asn	Val	Thr	Ile 185	Glu	Asp	Ile	Asn	Asp 190	Asn	Ala
Pro	Ala	Phe 195	Asn	ГÀв	Ala	Arg	Tyr 200	Asp	Glu	Ser	Met	Ser 205	Glu	Asn	Ala
Gln	Pro 210	Asp	Ala	Val	Val	Met 215	Thr	Ile	Ser	Ala	Ser 220	Asp	Phe	Asp	Asp
Gly 225	Asn	Asn	Ser	Leu	Val 230	Glu	Tyr	Glu	Ile	Leu 235	Arg	Glu	Arg	Asp	Phe 240
Gln	Tyr	Phe	Lys	Ile 245	Asp	Lys	Glu	Ser	Gly 250	Ile	Ile	Tyr	Leu	Lys 255	Arg
Pro	Ile	Asp	Lys 260	Arg	Pro	Gly	Gln	Ser 265	Tyr	Ala	Ile	Ile	Val 270	Arg	Ala
Tyr	Asn	Val 275	Val	Pro	Asp	Pro	Pro 280	Gln	Asp	Ala	Gln	Ile 285	Glu	Val	Arg
Ile	Arg 290	Val	Val	Glu	Ser	Ser 295	Ile	Lys	Pro	Pro	Ser 300	Phe	Val	Asn	Pro
Ile 305	Asp	Thr	Pro	Ile	Tyr 310	Leu	Lys	Glu	Asn	Leu 315	ГÀа	Asn	Phe	Thr	His 320
Pro	Ile	Ala	Thr	Leu 325	Arg	Ala	Val	Ser	Asn 330	Met	Pro	Asp	ГÀа	Pro 335	Glu
Val	Ile	Phe	Glu 340	Leu	Asn	Thr	Gly	Arg 345	Thr	Glu	Gln	Thr	Asn 350	Ser	Lys
Asn	Thr	Phe 355	Val	Phe	Asn	Gln	Ile 360	Gly	Asn	Glu	Val	Thr 365	Ile	Ser	Leu
Gly	Lys 370	Thr	Leu	Asp	Tyr	Glu 375	Ala	Ile	Thr	Asp	Tyr 380	Thr	Leu	Thr	Met
Ile 385	Val	Arg	Asn	Thr	His 390	Glu	Leu	Gly	Thr	Glu 395	His	Gln	Ile	Lys	Ile 400
Gln	Val	Glu	Asp	Val 405	Asn	Asp	Asn	Ile	Pro 410	Tyr	Tyr	Thr	Glu	Val 415	Lys
Ser	Gly	Thr	Ile 420	Leu	Glu	Asn	Glu	Pro 425	Pro	Gly	Thr	Pro	Val 430	Met	Gln

Val	Arg	Ala 435	Phe	Asp	Met	Asp	Gly 440	Thr	Ser	Ala	Asn	Asn 445	Ile	Val	Ser
Phe	Glu 450	Leu	Ala	Asp	Asn	Arg 455	Glu	Tyr	Phe	Thr	Ile 460	Asp	Pro	Asn	Thr
Gly 465	Asn	Ile	Thr	Ala	Leu 470	Thr	Thr	Phe	Asp	Arg 475	Glu	Glu	Arg	Asp	Phe 480
Tyr	Asn	Val	Lys	Val 485	Ile	Ala	Ser	Asp	Asn 490	Ser	Pro	Ser	Ser	Leu 495	Phe
Asp	Asn	Gly	Glu 500	Pro	Asn	Arg	Gly	His 505	Gln	Val	Phe	Arg	Ile 510	Ser	Ile
Gly	Asp	Lys 515	Asn	Asp	His	Lys	Pro 520	His	Phe	Gln	Gln	Asp 525	Lys	Tyr	Leu
Ala	Glu 530	Arg	Leu	Leu	Glu	Asp 535	Ala	Asn	Thr	Asn	Thr 540	Glu	Val	Ile	Glu
Val 545	Lys	Ala	Glu	Asp	Glu 550	Asp	Asn	Ala	Ser	Gln 555	Ile	Leu	Tyr	Ser	Ile 560
Glu	Ser	Gly	Asn	Val 565	Gly	Asp	Ala	Phe	Lys 570	Ile	Gly	Leu	ГЛа	Thr 575	Gly
Lys	Ile	Thr	Val 580	Asn	Gln	ГÀа	Leu	Asp 585	Tyr	Glu	Thr	Ile	Thr 590	Glu	Tyr
Glu	Leu	Lys 595	Val	Arg	Ala	Phe	Asp 600	Gly	Ile	Tyr	Asp	Asp 605	Tyr	Thr	Thr
Val	Val 610	Ile	Lys	Ile	Glu	Asp 615	Val	Asn	Asp	Asn	Pro 620	Pro	Val	Phe	Lys
Gln 625	Asp	Tyr	Ser	Val	Thr 630	Ile	Leu	Glu	Glu	Thr 635	Thr	Tyr	Asp	Asp	Cys 640
Ile	Leu	Thr	Val	Glu 645	Ala	Tyr	Asp	Pro	Asp 650	Ile	ГÀа	Asp	Arg	Asn 655	Ala
Asp	Gln	His	Ile 660	Val	Tyr	Ser	Ile	His 665	Gln	Asn	Asp	Gly	Asn 670	Arg	Trp
Thr	Ile	Asp 675	Asn	Ser	Gly	Càa	Leu 680	Arg	Leu	Val	ГÀа	Thr 685	Leu	Asp	Arg
Aap	Pro 690	Pro	Asn	Gly	His	695	Asn	Trp	Gln	Val	Leu 700	Ile	Lys	Ala	Asn
Asp 705	Glu	Asp	Gly	Val	Gly 710	Thr	Thr	Val	Ser	Thr 715	Val	Lys	Glu	Val	Thr 720
Val	Thr	Leu	Lys	Asp 725	Ile	Asn	Asp	Asn	Ala 730	Pro	Phe	Leu	Ile	Asn 735	Glu
Met	Pro	Val	Tyr 740	Trp	Gln	Glu	Asn	Arg 745	Asn	Pro	Gly	His	Val 750	Val	Gln
Leu	Gln	Ala 755	Asn	Asp	Tyr	Asp	Asp 760	Thr	Pro	Gly	Ala	Gly 765	Asn	Phe	Thr
Phe	Gly 770	Ile	Asp	Ser	Glu	Ala 775	Thr	Pro	Asp	Ile	Lуs 780	Thr	Lys	Phe	Ser
Met 785	Asp	Gly	Asp	Tyr	Leu 790	His	Ala	Asn	Val	Gln 795	Phe	Asp	Arg	Glu	Ala 800
Gln	Lys	Glu	Tyr	Phe 805	Ile	Pro	Ile	Arg	Ile 810	Ser	Asp	Ser	Gly	Val 815	Pro
Arg	Gln	Ser	Ala 820	Val	Ser	Ile	Leu	His 825	Leu	Val	Ile	Gly	Asp 830	Val	Asn
Asp	Asn	Ala 835	Met	Ser	Glu	Gly	Ser 840	Ser	Arg	Ile	Phe	Ile 845	Tyr	Asn	Tyr

-continued	
-continued	

Lys	Gly 850	Glu	Ala	Pro		Thr 855	Asp	Ile	Gly	Arg	Val 860	Phe	Val	Asp	Asp
Leu 865	Asp	Asp	Trp	Asp	Leu 870	Glu	Asp	Lys	Tyr	Phe 875	Glu	Trp	Lys	Asp	Leu 880
Pro	His	Asp	Gln	Phe 885	Arg	Leu	Asn	Pro	Ser 890	Thr	Gly	Met	Ile	Th:	Met
Leu	Val	His	Thr 900	Ala	Glu	Gly	Glu	Tyr 905		Leu	Ser	Phe	Val 910		Thr
Glu	Asp	Ser 915	Met	Phe	Val	Pro	Arg 920	His	Ser	Val	Asp	Ala 925		Va]	Thr
Val	Val 930	Val	Arg	Glu		Pro 935	Glu	Glu	Ala	Val	Asp 940	Lys	Ser	GlΣ	/ Ser
Ile 945	Arg	Phe	Ile	Asn	Val 950	Thr	Lys	Glu	Glu	Phe 955	Ile	Ser	Val	Pro	960
Asp	Phe	Gln	Ser	Pro 965	Asp	Ala	Leu	Ser	Leu 970		Asp	Arg	Phe	Glr 975	ı Leu
Ser	Leu	Ala	Ь 980	Leu	Phe	Asn	Thr	Ser 985		Ser	Asn	Val	Asp		. Phe
Thr	Val	Leu 995	Gln	Asn	Glu	Asn	His 100		r Le	u As	p Vai		g P 05	he S	Ser Ala
His	Gly 1010		Pro	y Tyr	Tyr	Ala 101		ro G	lu L	λa Γ		sn 020	Gly	Ile	Val
Ala	Gln 1025		n Glr	n Glr	n Arg	Let 103		lu A	sn G	lu L		sp 035	Leu	Gln	Met
Leu	Met 1040		. Asr	ı Ile	e Asp	Glu 104		ys L	eu I	le G		ys 050	Phe	Lys	Cys
Glu	Glu 1055		Cys	Thr	Asn	Glu 106		eu H	is L	ya S		er 065	Val	Pro	Tyr
Met	Ile 1070		Ser	: Asr	1 Thr	Th:		er P	he V	al G		al 080	Asn	Ala	Phe
Val	Gln 1085		a Glr	ı Cys	. Val	Cys		lu A	la P	ro L		et 095	Arg	Arg	Cys
Leu	Asn 1100		√ Gly	/ Ser	Pro	Arg		yr G	ly G	lu A		sp 110	Val	Cys	Aap
Cys	Ile 1115		Gly	/ Phe	e Thr	Gl ₃		ro H	is C	ys G		eu 125	Val	Ser	Val
Ala	Phe 1130	-	Gly	/ Ser	Gly	Туз 113		la P	he T	yr G		ro 140	Ile	Ala	Ala
CAa	Asn 1145		n Thr	. Lys	: Ile	Sei 115		eu G	lu I	le T		ro 155	Gln	Ile	Asp
Gln	Gly 1160		ı Ile	e Met	Tyr	Let 116		ly P	ro L	eu A		he 170	Asn	Pro	Leu
Leu	Ala 1175		e Ser	: Asp) Phe	Leu 118		la L	eu G	lu L		sp 185	Asn	Gly	Tyr
Pro	Val 1190		ı Thr	. Val	. Asp	Ty:		ly s	er G	ly A		le 200	Arg	Ile	Arg
His	Gln 1205		: Ile	e Lys	Met	Va:		la A	sp A	rg T		yr 215	Gln	Leu	Asp
Ile	Ile 1220		ı Glr	n Arg	, Thr	Sei 122		le G	lu M	et T		al 230	Asp	Asn	Cha
Arg	Leu 1235		Thr	c Cys	. Gln	Th:		eu G	ly A	la P		le 245	Gly	Pro	Asn
Glu			ı Asr	ı Val	. Asn			ro L	eu G	ln L			Gly	Thr	Pro

											-001	1011	<u> </u>	
	1250					1255					1260			
Val	Asp 1265		Glu	Gln	. Leu	Gly 1270	_	Gln	Leu	Asn	Trp 1275	Thr	His	Val
Pro	Asn 1280		Lys	Gly	Phe	Phe 1285		Сув	Ile		Asn 1290	Leu	Thr	Ile
Asn	Glu 1295		Thr	Tyr	Asn	Leu 1300		Met	Pro	Ser	Val 1305	Phe	Arg	Asn
Ile	Asp 1310		Gly	Cys	Gln	Gln 1315		Val	Ala	Val	Ala 1320	Phe	Ser	Phe
Gly	Ile 1325	_	Arg	Asn	Phe	Ile 1330		Ala	Ile	Ile	Val 1335	Cys	Leu	Ala
Leu	Leu 1340		Ile	Ile	Leu	Leu 1345		Val	Val	Val	Gln 1350	Lys	ГЛа	Gln
Lys	Asn 1355		Trp	His	Glu	Lys 1360		Ile	Asp	Asp	Ile 1365	Arg	Glu	Thr
Ile	Ile 1370		Tyr	Glu	. Asp	Glu 1375		Gly	Gly	Glu	Arg 1380	Asp	Thr	Asp
Tyr	Asp 1385		Asn	Val	Leu	Arg 1390		Gln	Pro	Phe	Tyr 1395	Glu	Glu	Lys
Leu	Tyr 1400		Asp	Pro	His	Ala 1405		Gln	Gly	Asn	Met 1410	Arg	Asp	Pro
Asn	Asp 1415		Pro	Asp	Ile	Ala 1420		Phe	Leu	Gly	Asp 1425	Lys	ГЛа	Glu
Asn	. Сув 1430		Arg	Asp	Val	Gly 1435		Thr	Thr	Val	Asp 1440	Asp	Val	Arg
His	Tyr 1445		Tyr	Glu	Gly	Asp 1450		Asn	Ser	Asp	Gly 1455	Ser	Leu	Ser
Ser	Leu 1460	Ala	Ser	Сув	Thr	Asp 1465		Gly	Asp	Leu	Asn 1470	Phe	Asp	Tyr
Leu	Ser 1475		Phe	Gly	Pro	Arg 1480		Arg	ГÀз		Ala 1485	Asp	Met	Tyr
Gly	Glu 1490		Pro	Ser	Asp	Thr 1495		Ser	Asn	Val	Asp 1500		Asp	Gln
Gly	Trp 1505		Ile											
<21 <21	0 > SE(1 > LE 2 > TY 3 > OR(NGTH PE :	: 21 PRT	46	ophi	la me	lano	gast	∍r					
< 40	0> SE	QUEN	CE:	6										
Met 1	Ala	Lys		Ala 5	Asn	Ala S	er L	eu So 1		ln G	ln Glı	ı Ly:	5 Gli 15	n Arg
Gln	Ala		Thr 20	Ala	Thr	Thr T	hr Ti		nr T	hr V	al Ala	a Ala 30	a Se:	r Val
Glu	Thr .	Ala 35	Thr	Thr	Thr	Ala A	_	er A	rg A	sp A	rg Th: 45	r Ly:	s Se:	r Ala
Ala	Gln 50	Ile	Thr	Ser		Leu L 55	eu L	ys A:	rg A	la I 6		r Val	l Ty:	r Ser
Ser	Pro	Gln	Trp		Pro 70	Leu P	he I	le L	eu I 7		yr Le	ı Ala	a Th:	r Asp 80
Val	Ala	Ser		Ala 85	Val	Pro T	hr L	ys G: 9:		la T	yr Ph	e Ası	n Gl	/ Ser

_															
Thr	Tyr	Leu	Arg 100	Leu	Thr	Thr	Pro	Met 105	Pro	Ile	Trp	Asp	His 110	Ser	Ala
Ile	Ser	Phe 115	Arg	Ser	Cys	Arg	Gly 120	Gly	Glu	Ile	Leu	Ala 125	Gln	Gln	Tyr
Asn	Lys 130	Asn	Ser	Ile	Val	Ile 135	Ser	Val	Leu	Asn	Asp 140	Phe	Leu	Gln	Ile
Ser 145	Leu	Ala	Gly	Pro	Ala 150	Val	His	Gly	Pro	Asn 155	Asn	Arg	Leu	Asp	Val 160
Lys	Leu	Pro	Tyr	Gln 165	Leu	Leu	Asp	Asn	Arg 170	Trp	His	Thr	Leu	Gln 175	Phe
Lys	Tyr	Glu	Tyr 180	Gly	Asn	Leu	Tyr	Leu 185	His	Val	Asp	Arg	Ala 190	Ala	Ser
Ile	Phe	Ala 195	Asn	Ser	Thr	Tyr	Asn 200	Ser	Gln	Phe	Leu	Thr 205	Asn	Gln	Asp
Ile	Gly 210	Tyr	Lys	Asp	Ala	Ile 215	Leu	Ile	Leu	Gly	Asn 220	Ser	Phe	Ser	Gly
Сув 225	Leu	Leu	Asp	Gly	Pro 230	Gly	Leu	Gln	Phe	Val 235	Asn	Asn	Ser	Thr	Val 240
Gln	Asn	Val	Val	Phe 245	Gly	His	Cys	Pro	Leu 250	Thr	Pro	Gly	Pro	Сув 255	Ser
Asp	His	Asp	Leu 260	Phe	Thr	Arg	Leu	Pro 265	Asp	Asn	Phe	Cys	Leu 270	Asn	Asp
Pro	Сув	Met 275	Gly	His	Gly	Thr	Cys 280	Ser	Ser	Ser	Pro	Glu 285	Gly	Tyr	Glu
Càa	Arg 290	Сув	Thr	Ala	Arg	Tyr 295	Ser	Gly	Lys	Asn	300	Gln	Lys	Asp	Asn
Gly 305	Ser	Pro	CÀa	Ala	110 310	Asn	Pro	CÀa	Glu	Asn 315	Gly	Gly	Ser	CÀa	Leu 320
Glu	Asn	Ser	Arg	Gly 325	Asp	Tyr	Gln	Cys	Phe 330	Сув	Asp	Pro	Asn	His 335	Ser
Gly	Gln	His	Cys 340	Glu	Thr	Glu	Val	Asn 345	Ile	His	Pro	Leu	Сув 350	Gln	Thr
Asn	Pro	Сув 355	Leu	Asn	Asn	Gly	Ala 360	Cys	Val	Val	Ile	Gly 365	Gly	Ser	Gly
Ala	Leu 370	Thr	Cys	Glu	CÀa	Pro 375	Lys	Gly	Tyr	Ala	Gly 380	Ala	Arg	Cys	Glu
Val 385		Thr	Asp		390 CAa			Gln		Cys 395		Asn	Asn	Gly	Ser 400
CÀa	Ile	Asp	Arg	Ile 405	Asn	Gly	Phe	Ser	Cys 410	Asp	СЛа	Ser	Gly	Thr 415	Gly
Tyr	Thr	Gly	Ala 420	Phe	GÀa	Gln	Thr	Asn 425	Val	Asp	Glu	CÀa	Asp 430	ГÀа	Asn
Pro	Cys	Leu 435	Asn	Gly	Gly	Arg	Cys 440	Phe	Asp	Thr	Tyr	Gly 445	Trp	Tyr	Thr
Cys	Gln 450	Сув	Leu	Asp	Gly	Trp 455	Gly	Gly	Glu	Ile	Cys 460	Asp	Arg	Pro	Met
Thr 465	Сув	Gln	Thr	Gln	Gln 470	Cys	Leu	Asn	Gly	Gly 475	Thr	Cys	Leu	Asp	Lys 480
Pro	Ile	Gly	Phe	Gln 485	CÀa	Leu	СЛа	Pro	Pro 490	Glu	Tyr	Thr	Gly	Glu 495	Leu
CÀa	Gln	Ile	Ala 500	Pro	Ser	CAa	Ala	Gln 505	Gln	Cys	Pro	Ile	Asp 510	Ser	Glu
CÀa	Val	Gly	Gly	ГЛа	CAa	Val	Cha	Lys	Pro	Gly	Ser	Ser	Gly	Tyr	Asn

515		520		525	
Cys Gln Thr Se	r Thr Gly Asp 535		Ser Ala Le		. Thr Pro
Ile Asn Cys As 545	n Ala Thr Asr 550	o Gly Lys	Cys Leu As: 555	n Gly Gly	Thr Cys 560
Ser Met Asn Gl	y Thr His Cys 565	s Tyr Cys	Ala Val Gl	y Tyr Ser	Gly Asp 575
Arg Cys Glu Ly 58		n Cys Ser 585	Pro Leu As:	n Cys Gln 590	
Met Val Cys Va 595	l Gln Asn Glr	n Cys Leu 600	Cys Pro Gl	u Asn Lys 605	Val Cys
Asn Gln Cys Al 610	a Thr Gln Pro 615		Asn Gly Gl		Val Asp
Leu Pro Asn Gl 625	y Asp Tyr Glu 630	ı Cya Lya	Cys Thr Are	g Gly Trp	Thr Gly 640
Arg Thr Cys Gl	y Asn Asp Val 645	. Asp Glu	Cys Thr Le	u His Pro	Lys Ile 655
Cys Gly Asn Gl 66		Asn Glu 665	Lys Gly Se	r Tyr Lys 670	
Cys Thr Pro Gl 675	y Phe Thr Gly	Val His 680	Cys Asp Se	r Asp Val 685	Asp Glu
Cys Leu Ser Ph 690	e Pro Cys Leu 695	-	Ala Thr Cy		Lys Ile
Asn Ala Tyr Gl 705	u Cys Val Cys 710	Gln Pro	Gly Tyr Gl	ı Gly Glu	Asn Cys 720
Glu Val Asp Il	e Asp Glu Cys 725	Gly Ser	Asn Pro Cy 730	s Ser Asn	Gly Ser 735
Thr Cys Ile As		Asn Phe 745	Thr Cys As	n Cys Ile 750	
Met Thr Gly Ar 755	g Ile Cys Asp	760	Ile Asp As	p Cys Val 765	Gly Asp
Pro Cys Leu As 770	n Gly Gly Glr 775		Asp Gln Le		Phe Arg
Cys Asp Cys Se 785	r Gly Thr Gly 790	7 Tyr Glu	Gly Glu As: 795	n Cys Glu	Leu Asn 800
Ile Asp Glu Cy	s Leu Ser Asr 805	n Pro Cys	Thr Asn Gl	y Ala Lys	Cys Leu 815
Asp Arg Val Ly 82		e Cys Asp 825	Cys His As	n Gly Tyr 830	_
Lys Asn Cys Gl 835	u Gln Asp Ile	e Asn Glu 840	Cys Glu Se	r Asn Pro 845	Cys Gln
Tyr Asn Gly As 850	n Cys Leu Glu 855	-	Asn Ile Th	_	Gln Met
Ser Arg Ile Th 865	r Asp Leu Pro 870	Lys Val	Phe Ser Gl: 875	n Pro Phe	Ser Phe 880
Glu Asn Ala Se	r Gly Tyr Glu 885	ı Cys Val	Cys Val Pro 890	o Gly Ile	e Ile Gly 895
Lys Asn Cys Gl 90		Asn Glu 905	Cys Asp Se	r Asn Pro 910	_
Lys His Gly As 915	n Cys Asn Asp	Gly Ile 920	Gly Thr Ty	r Thr Cys 925	Glu Cys
Glu Pro Gly Ph 930	e Glu Gly Thr 935	_	Glu Ile As:	_	Glu Cys

Asp 945	Arg	Tyr	Asn		Сув 950	Gln	Arg	Gl	y Ti		Сув 955	Туз	. Asp	Glr	ı Ile	e Asp 960
Asp	Tyr	Asp	CAa	Asp 965	Сув	Asp	Ala	As		yr 70	Gly	GlΣ	/ Lys	s Asr	n Cys 975	Ser
Val	Leu	Leu	Lys 980	Gly	Сув	Asp	Gln	As: 98		ro	Cys	Leu	ı Asr	990		/ Ala
CÀa		Pro 995	Tyr	Leu	Ile		Glu 1000		al'	Thr	His	: Le	_	r <i>P</i>	Asn (ys Thr
CÀa	Glu 1010		Gly	Phe	Gln	Gly 101		зp	Lys	Су	s G]		уs 1020	Thr	Thr	Thr
Leu	Ser 1025		Val	Ala	Thr	Ser 103		eu	Ile	Se	r Va		hr 1035	Thr	Glu	Arg
Glu	Glu 1040		Tyr	Asp	Ile	Asn 104		eu '	Gln	Ph	e Aı	_	hr 1050	Thr	Leu	Pro
Asn	Gly 1055		Leu	Ala	Phe	Gly 106		ır	Thr	Gl;	y Gl		.ув 1065	Asn	Glu	Pro
Val	Ser 1070	-	Ile	Leu	Glu	Leu 107		Le .	Asn	Gl;	у Аз	_	leu 1080	Asn	Leu	His
Ser	Ser 1085		. Leu	. Asn	Lys	Trp 109		Lu	Gly	Va	l Pł		le 1095	Gly	Ser	ГЛа
Leu	Asn 1100		Ser	Asn	Trp	His 110		/s	Val	Ph	e Va		Ala 1110	Ile	Asn	Thr
Ser	His 1115		. Val	Leu	. Ser	Ala 112		sn.	Asp	Gl	u G]		Ala 1125	Ile	Phe	Pro
Val	Gly 1130		Tyr	Glu	Thr	Ala 113		sn.	Asn	Se	r Gl		Pro 1140	Ser	Phe	Pro
Arg	Thr 1145		Leu	Gly	Gly	Thr 115		Le	Pro	As	n Le		ys 1155	Ser	Tyr	Leu
Arg	His 1160		. Thr	His	Gln	Pro 116		er.	Ala	Ph	e Va		∄ly 1170	Cys	Met	Gln
Asp	Ile 1175		Val	Asn	Gly	Lys 118		сp	Ile	Ph	e Pı		Asp 1185	Glu	Gln	Asp
Ala	Asn 1190		Ser	Tyr	Thr	Lys 119		eu	Glu	As	n Va		31n 1200	Ser	Gly	Cys
Pro	Arg 1205		Glu	Gln	Cys	Lys 121		co.	Asn	Pr	o GŽ		lis 1215	Ser	Asn	Gly
Glu	Cys 1220		Asp	Leu	Trp	His 122		ır	Phe	Al	a Cy		His 1230	Cys	Pro	Arg
Pro	Phe 1235		Gly	His	Thr	Cys 124		ln :	His	As	n Me		hr 1245	Ala	Ala	Thr
Phe	Gly 1250		Glu	. Asn	Thr	Thr 125		Ĺs	Ser	Al	a Va		le 1260	Val	Glu	Thr
Thr	Asp 1265		Ala	Arg	Arg	Ala 127		Le .	Arg	Se	r Il		Jeu 1275	Asp	Ile	Ser
Met	Phe 1280		Arg	Thr	Arg	Glu 128		ro	Thr	Gl	y GI		7al L290	Phe	Tyr	Leu
Gly	Thr 1295		Pro	Arg	Lys	Ala 130		ro	Thr	Ly	s As		le 1305	Gly	Asp	Ser
Tyr	Val 1310		Ala	. Lys	Leu	His		Ly	Gly	Gl	u Le		Jeu 1320	Val	rys	Met
Gln	Phe 1325		Gly	Thr	Pro	Glu 133		La	Tyr	Th	r Va		31y 1335	Gly	Gln	Lys

Leu	Asp 1340	Asn	Gly	Tyr	Asn	His 1345	Leu	Ile	Glu	Val	Val 1350	Arg	Asn	Gln
Thr	Leu 1355	Val	Gln	Val	Lys	Leu 1360	Asn	Gly	Thr	Glu	Tyr 1365	Phe	Arg	Lys
Thr	Leu 1370	Ser	Thr	Thr	Gly	Leu 1375	Leu	Asp	Ala	Gln	Val 1380	Leu	Tyr	Leu
Gly	Gly 1385	Pro	Ala	Pro	Thr	Arg 1390	Glu	Ser	Leu	Leu	Gly 1395	Ala	Thr	Thr
Glu	Pro 1400	Gly	Ile	Ile	Pro	Val 1405	Pro	Gly	Ala	Gly	Ile 1410	Pro	Ile	Glu
Asp	Thr 1415	Thr	Val	Pro	Lys	Glu 1420	Ala	Asp	Asp	Ser	Arg 1425	Asp	Tyr	Phe
Lys	Gly 1430	Ile	Ile	Gln	Asp	Val 1435	Lys	Val	Ser	Asn	Gly 1440	Ser	Leu	Asn
Leu	Ile 1445	Val	Glu	Met	Tyr	Ser 1450	Leu	Asn	Val	Thr	Asp 1455	Val	Gln	Val
Asn	Ala 1460	ГЛа	Pro	Leu	Gly	Ala 1465	Val	Thr	Ile	Asp	Arg 1470	Ala	Ser	Val
Leu	Pro 1475	Gly	Glu	Val	Ser	Asp 1480	Asp	Leu	Cys	Arg	Lys 1485	Asn	Pro	CÀa
Leu	His 1490	Asn	Ala	Glu	Cys	Arg 1495	Asn	Thr	Trp	Asn	Asp 1500	Tyr	Thr	CÀa
Lys	Cys 1505	Pro	Asn	Gly	Tyr	Lys 1510	Gly	Lys	Asn	CAa	Gln 1515	Glu	Ile	Glu
Phe	Cys 1520	Gln	His	Val	Thr	Cys 1525	Pro	Gly	Gln	Ser	Leu 1530	Сув	Gln	Asn
Leu	Asp 1535	Asp	Gly	Tyr	Glu	Cys 1540	Val	Thr	Asn	Thr	Thr 1545	Phe	Thr	Gly
Gln	Glu 1550	Arg	Ser	Pro	Leu	Ala 1555	Phe	Phe	Tyr	Phe	Gln 1560	Glu	Gln	Gln
Ser	Asp 1565	Asp	Ile	Val	Ser	Glu 1570	Ala	Ser	Pro	Lys	Gln 1575	Thr	Leu	Lys
Pro	Val 1580	Ile	Asp	Ile	Ala	Phe 1585	Arg	Thr	Arg	Ala	Gly 1590	Gly	Thr	Leu
Leu	Tyr 1595	Ile	Asp	Asn	Val	Asp 1600	Gly	Phe	Phe	Glu	Ile 1605	Gly	Val	Asn
Gly	Gly 1610	Arg	Val	Thr	Ile	Thr 1615	Trp	Lys	Leu	Ser	Ala 1620	Leu	His	Phe
Gly	Glu 1625	Ser	Ala	Arg	Phe	Glu 1630	Lys	Glu	Asn	Thr	Asp 1635	Gly	Glu	Trp
Ser	Arg 1640	Ile	Tyr	Leu	Arg	Ala 1645	His	Asn	Ser	rys	Leu 1650	Glu	Gly	Gly
Trp	Lys 1655	Gly	Trp	Glu	Ser	Met 1660	Val	Asp	Pro	Thr	Pro 1665	Ala	Phe	Ser
Thr	Asp 1670	Ile	Asp	Gln	Ala	Ala 1675	Phe	Gln	Ser	Leu	Ile 1680	Ala	Thr	Ser
Thr	Gln 1685	Val	Tyr	Leu	Gly	Gly 1690	Met	Pro	Glu	Ser	Arg 1695	Gln	Ala	Arg
Gly	Ser 1700	Thr	Leu	Ser	Ala	Gln 1705	Gln	Gly	Ser	Gln	Phe 1710	Lys	Gly	CAa
Val	Gly 1715	Glu	Ala	Arg	Val	Gly 1720	Asp	Leu	Leu	Leu	Pro 1725	Tyr	Phe	Ser
Met	Ala	Glu	Leu	Tyr	Ser	Arg	Thr	Asn	Val	Ser	Val	Gln	Gln	ГЛа

	1730					1735					1740			
Ala	Gln 1745	Phe	Arg	Leu	Asn	Ala 1750	Thr	Arg	Pro	Glu	Glu 1755	Gly	Cya	Ile
Leu	Cys 1760	Phe	Gln	Ser	Asp	Cys 1765	Lys	Asn	Asp	Gly	Phe 1770	СЛа	Gln	Ser
Pro	Ser 1775	Asp	Glu	Tyr	Ala	Cys 1780	Thr	Cys	Gln	Pro	Gly 1785	Phe	Glu	Gly
Asp	Asp 1790	CAa	Gly	Thr	Asp	Ile 1795	Asp	Glu	Сув	Leu	Asn 1800	Thr	Glu	СЛа
Leu	Asn 1805	Asn	Gly	Thr	Cys	Ile 1810	Asn	Gln	Val	Ala	Ala 1815	Phe	Phe	Сув
Gln	Cys 1820	Gln	Pro	Gly	Phe	Glu 1825	Gly	Gln	His	Cys	Glu 1830	Gln	Asn	Ile
Asp	Glu 1835	CAa	Ala	Asp	Gln	Pro 1840	Cys	His	Asn	Gly	Gly 1845	Asn	CÀa	Thr
Asp	Leu 1850	Ile	Ala	Ser	Tyr	Val 1855	Cys	Asp	Cys	Pro	Glu 1860	Asp	Tyr	Met
Gly	Pro 1865	Gln	Cys	Asp	Val	Leu 1870	Lys	Gln	Met	Thr	Cys 1875	Glu	Asn	Glu
Pro	Cys 1880	Arg	Asn	Gly	Ser	Thr 1885	Càa	Gln	Asn	Gly	Phe 1890	Asn	Ala	Ser
Thr	Gly 1895	Asn	Asn	Phe	Thr	Cys 1900	Thr	CÀa	Val	Pro	Gly 1905	Phe	Glu	Gly
Pro	Leu 1910	Cys	Asp	Ile	Pro	Phe 1915	Cys	Glu	Ile	Thr	Pro 1920	Cys	Asp	Asn
Gly	Gly 1925	Leu	Cys	Leu	Thr	Thr 1930	Gly	Ala	Val	Pro	Met 1935	Cys	Lys	Cys
Ser	Leu 1940	Gly	Tyr	Thr	Gly	Arg 1945	Leu	Сув	Glu	Gln	Asp 1950	Ile	Asn	Glu
CÀa	Glu 1955	Ser	Asn	Pro	Cys	Gln 1960	Asn	Gly	Gly	Gln	Сув 1965	Lys	Asp	Leu
Val	Gly 1970	Arg	Tyr	Glu	Cys	Asp 1975	Сув	Gln	Gly	Thr	Gly 1980	Phe	Glu	Gly
Ile	Arg 1985	Cys	Glu	Asn	Asp	Ile 1990	Asp	Glu	Cys	Asn	Met 1995	Glu	Gly	Asp
Tyr	Cys 2000	Gly	Gly	Leu	Gly	Arg 2005	Сув	Phe	Asn	Lys	Pro 2010	Gly	Ser	Phe
Gln	Cys 2015	Ile	CÀa	Gln	Lys	Pro 2020	Tyr	Cys	Gly	Ala	Tyr 2025	Cys	Asn	Phe
Thr	Asp 2030	Pro	CÀa	Asn	Ala	Thr 2035	Asp	Leu	Cys	Ser	Asn 2040	Gly	Gly	Arg
Cys	Val 2045	Glu	Ser	Cys	Gly	Ala 2050	Lys	Pro	Asp	Tyr	Tyr 2055	Cys	Glu	Cys
Pro	Glu 2060	Gly	Phe	Ala	Gly	Lys 2065	Asn	Cys	Thr	Ala	Pro 2070	Ile	Thr	Ala
ГÀа	Glu 2075	Asp	Gly	Pro	Ser	Thr 2080	Thr	Asp	Ile	Ala	Ile 2085	Ile	Val	Ile
Pro	Val 2090	Val	Val	Val	Leu	Leu 2095	Leu	Ile	Ala	Gly	Ala 2100	Leu	Leu	Gly
Thr	Phe 2105	Leu	Val	Met	Ala	Arg 2110	Asn	Lys	Arg	Ala	Thr 2115	Arg	Gly	Thr
Tyr	Ser 2120	Pro	Ser	Ala	Gln	Glu 2125	Tyr	Сла	Asn	Pro	Arg 2130	Leu	Glu	Met

Asp Asn Val Leu Lys Pro Pro Pro Glu Glu Arg Leu Ile 2135 2140 2145															
<212 <212	L> LI 2> T	ENGTI YPE :	H: 20	019	soph:	ila m	melar	nogas	ster						
< 400)> SI	EQUEI	ICE:	7											
Met 1	Gln	Ala	Asn	Ser 5	Ser	Arg	Ser	Asn	Leu 10	Ser	Ala	Gln	Ser	Ser 15	Gly
Thr	Pro	Ser	Ala 20	Ser	Thr	Ile	Ser	Ser 25	Ser	Gln	Gly	Lys	Gln 30	Gln	Val
Val	Glu	Leu 35	Ser	Gly	Tyr	Val	Ile 40	Ile	Leu	Val	Glu	Asn 45	Val	Glu	Gly
Lys	Ile 50	ГÀа	Leu	Tyr	Gly	Ser 55	Pro	Pro	Asp	Arg	Asp	Asn	Leu	Glu	Val
Gly 65	Asp	Glu	Ile	Leu	Glu 70	Val	Asn	Gly	Leu	Thr 75	Leu	Glu	Asn	Ile	Ser 80
Arg	Thr	Glu	Val	Ile 85	Arg	His	Ile	His	Asp	Сув	Ile	Lys	Ser	Cys 95	Thr
Ile	Cys	Leu	Arg 100	Val	Arg	Lys	Lys	Asn 105	Asp	Ser	Arg	Leu	Ala 110	Trp	Asp
Ile	Gly	Asn 115	Ser	Val	Gln	Asp	Ala 120	Phe	Val	Ile	Ala	Val 125	Glu	Glu	His
Ala	Arg 130	Glu	Arg	Leu	Gln	Arg 135	Leu	Ala	Ala	Leu	Asn 140	Arg	Val	Thr	Pro
Val 145	Asp	Ile	Thr	Gln	Leu 150	Ser	Lys	Lys	Leu	Gln 155	Gln	Thr	Lys	Ser	Gly 160
Thr	Ala	Thr	Ser	Gln 165	Arg	Gln	Asp	Leu	Ser 170	Phe	Leu	Asn	Glu	Ser 175	Thr
Pro	Ile	Tyr	Val 180	Thr	Ser	Phe	Thr	Ser 185	Asn	Gln	Ile	Thr	Cys 190	Ser	Ser
Ser	Thr	Met 195	Thr	Thr	Ala	Thr	Ala 200	Gly	Gly	Pro	Ile	Ser 205	Ala	Pro	Ser
Leu	Ala 210	Thr	Ala	Thr	Thr	Thr 215	Val	Pro	Thr	Ala	Ser 220	Ser	His	Thr	Thr
Thr 225	Val	Val	Ala	Gln	Ile 230	Glu	His	Gly	Ala	Ser 235	Ala	Leu	Val	Ser	Ala 240
Ala	Val	Ala	Ala	Ala 245	Thr	Ala	Ala	Asp	Arg 250	Asn	Ala	Asn	Ser	Thr 255	Thr
Ser	Ala	Ala	Leu 260	Lys	Gln	Thr	Ala	Asn 265	Cys	Ile	Gly	Asn	Ser 270	Thr	Ser
Ser	Leu	Gly 275	Thr	Thr	Ser	Thr	Thr 280	Ser	Ser	Gln	Ser	Thr 285	Ser	Ser	Ala
Thr	Gly 290	His	Ile	Tyr	Gln	Thr 295	Ser	Gln	Ala	Gln	Gln 300	Gln	Gln	Leu	Gln
Gln 305	Leu	Gln	Gln	Gln	Leu 310	Ala	Ala	Ala	Ala	Ala 315	Ala	Gly	Lys	Pro	Leu 320
Gln	Ala	Lys	Ser	Leu 325	Leu	Ala	Ser	Ser	Leu 330	Gln	His	Leu	Ala	Glu 335	Glu
Val	Asp	Asn	Glu 340	Asp	Leu	Asp	Asp	Asp 345	Asp	Asp	Val	Asp	Gly 350	Ala	Asn
Tyr	Cys	Gly	Ile	Thr	Tyr	Ile	Ser	Tyr	Asn	Asn	Lys	His	Ala	Gln	Leu

		355					360					365			
Pro	Thr 370	Thr	Thr	Leu	Pro	Ala 375	Thr	Thr	Ala	Leu	Pro 380	Ala	Ala	Ala	Ala
Ser 385	Leu	Ala	Thr	Thr	Ala 390	Ala	Ile	Tyr	Gln	Gln 395	Arg	Gln	Gln	Gln	Gln 400
His	Gln	Gln	Gln	Gln 405	Gln	Gln	Gln	Gln	Gln 410	Pro	Val	His	His	His 415	Asn
His	Pro	Pro	Thr 420	Ala	Ser	Gln	Leu	Asn 425	Arg	Ala	Thr	Ala	Pro 430	Ala	Pro
Leu	Gln	Leu 435	Gly	Gly	Pro	Val	Asn 440	Pro	Ser	Phe	Val	Asp 445	Ala	Gln	Thr
Ser	Thr 450	Ser	Pro	Leu	Met	Ala 455	Gln	Gln	Leu	His	Ser 460	Gln	His	Ala	Asp
Val 465	Asp	Ala	Ala	Pro	Pro 470	Ser	Ser	Ser	Ser	Ser 475	Ser	Ala	Val	Val	Val 480
Val	Glu	Arg	His	Val 485	His	Gly	Thr	Thr	Thr 490	Pro	Lys	Thr	Glu	Tyr 495	Ser
Thr	Ala	Ile	Ser 500	Ser	Gly	Gln	Leu	Gln 505	Gln	Ala	Phe	Ala	Glu 510	Leu	Gln
Leu	His	Ser 515	Ser	Asn	Asn	Asn	Ala 520	Thr	Gln	Gln	Gln	Gln 525	Gln	His	Leu
Leu	Leu 530	Ser	Asn	Asn	Asn	Asn 535	Ser	Asn	Asn	Ser	Met 540	Ala	Ala	Ala	Gln
Thr 545	Thr	Ala	Ser	Leu	Met 550	Lys	Asn	CAa	Asp	Leu 555	Leu	Ile	Ser	Asn	Asn 560
Leu	Tyr	Pro	Pro	Arg 565	Arg	Glu	Leu	Leu	Glu 570	Asp	Val	Ile	Val	His 575	Gln
Ala	Ser	Asp	Val 580	His	Ser	Tyr	Ser	Thr 585	Ser	Ala	Ser	Ala	Ala 590	Ala	Ile
Ala	Ser	Ser 595	Ser	Asn	Arg	Ser	Gln 600	Gln	Gln	Gln	Gln	Gln 605	Gln	Gln	Gln
His	Gln 610	Leu	Leu	Ser	Ala	Ala 615	Tyr	Glu	Leu	Gln	Gln 620	Gln	Gln	Gln	Leu
Gln 625	Leu	Gln	Gln	Gln	Gln 630	Gln	Gln	Gln	Asn	Ser 635	Pro	Thr	Ser	Ser	Ile 640
Ser	Ile	Gly	Arg	Thr 645	Glu	Leu	Leu	Leu	Gly 650	Asp	Gln	Ser	Leu	Arg 655	Gln
Asp	Pro	Arg	Gly 660	Asn	Arg	Arg	Arg	Ser 665	Gly	Ser	Ser	Ile	Val 670	Val	Leu
Asp	Gly	Asp 675	Asp	Leu	Lys	Pro	680 Cys	Leu	Pro	Asp	Asp	Tyr 685	Ile	Ser	Gly
Gln	His 690	His	Leu	Asn	His	Gln 695	Gln	Gln	Leu	Gln	Leu 700	Gln	Gln	Gln	Leu
Gln 705	Gln	Gln	His	Pro	Leu 710	Gln	Gln	Gln	His	Tyr 715	Arg	Thr	His	Ser	Gly 720
Asp	Ile	Arg	Glu	Ile 725	Asp	Gln	Glu	Met	Leu 730	Thr	Met	Leu	Ser	Val 735	Asn
Gln	Asp	Asn	Gly 740	Pro	His	Arg	Glu	Met 745	Ala	Val	Asp	Cys	Pro 750	Asp	Thr
Phe	Ile	Ala 755	Arg	Asn	Lys	Thr	Pro 760	Pro	Arg	Tyr	Pro	Pro 765	Pro	Arg	Pro
Pro	Gln 770	Lys	His	Lys	Lys	Ser 775	Thr	Asn	Thr	Thr	Thr 780	Thr	Thr	Thr	Ile

Thr 785	Ala	Leu	Thr		Asn 790	Asp	His	Ala	Asn	Lys 795	Met	Leu	Ile	Val	Ala 800
Tyr	His	Ser	Ser	His 805	Gln	His	Glu	Gln	Leu 810	Gln	Gln	Gln	His	Pro 815	Ser
ГÀа	Thr	Ser	Thr 820	Thr	Thr	Thr	Thr	Ile 825	Ala	Leu	Asp	Val	Ala 830		Gln
Asn	Leu	Tyr 835	Asn	Gln	Lys	Gln	Gln 840	Asn	Lys	Leu	Glu	Gln 845		Glu	Asn
Tyr	Glu 850	Asn	Cya	Leu		Ser 855	Glu	Arg	Asn	Glu	Gln 860	His	Glu	Gln	Gln
Phe 865	Glu	Gln	Gln		Gln 870	His	Gln	Ala	Thr	Thr 875	Ala	Met	Ala	Ala	Thr 880
Gln	Val	Ala	Gln	Gln 885	Gln	Thr	Pro	Ser	His 890	Lys	Leu	Gln	Ala	Thr 895	Leu
Ser	Ser	Asp	Pro 900	Asn	Gly	Asn	Ser	Asn 905	Ser	Asn	Asn	Asn	Ser 910		Ile
Val	Gly	Ile 915	Ser	Ser	Ser	Ser	Ser 920	Ser	Asn	Asn	Ser	Ser 925		Thr	Asp
Asp	Phe 930	Leu	Cya	Val		Asp 935	Gly	Leu	Tyr	Gln	Gly 940	Arg	Lys	Asp	Thr
Ala 945	Ser	Pro	Ser		Ser 950	Ala	Phe	Asp	Glu	Val 955	Met	Ser	Lys	His	Thr 960
Leu	Asp	Ser	Phe	Gly 965	Ser	Ile	Ala	Tyr	Arg 970	His	Leu	His	Gln	Gln 975	His
Gln	Ala	Thr	Ser 980	Asn	Gly	Asn	Ser	Ser 985	Ser	Asn	Thr	Ser	Asn 990		Asn
Ser		Thr 995	Asn	Ser	Asn	Thr	Asn 1000		: Asr	n Sei	r Ası		r A 05	sn G	ly Asn
Thr	Ser 1010		. Asr	1 Thr	Ala	. Val		er Th	ır Ly	/s Tl		la 020	Thr	Val	Thr
ГÀа	Thr 1025		Val	. Ser	Ser	Sei 103		sn Se	er As	sn Se		sn 035	Ser	Leu .	Asn
Ser	Ser 1040		. Ser	Ser	Met	Hi:		ır Se	er Se	er Se		er 050	Ser	Gly :	His
Ser	Ser 1055		ı Ile	e Ala	Ser	Ala 106		nr Se	er Se	er Se		er . 065	Ala	Thr	Ser
	Ser 1070		Val	. Pro	Asp	Asp 107		eu Se	er Le	eu Al		ro 080		Gly	Tyr
Glu	Val 1085		Glr	ı Gln	Gln	Glr 109		ln Gl	ln Hi	is Le		al . 095	Ala	Thr	Pro
Val	Thr 1100		Leu	ı Leu	Pro	Pro 110		et Al	la Ly	/s H:		rg 110	Glu	Leu	Pro
Val	Asp 1115		Pro) Asp	Ser	Phe 112		Le Gl	Lu Me	et Va		ys 125	Thr	Thr	Pro
Arg	Tyr 1130		Pro	Pro	Ala	His		eu S∈	er Se	er Ai	-	ly 140	Ser	Leu :	Leu
Ser	Asn 1145	_	Sei	Ala	Ser	Th:		la Hi	ls Th	ır Tl		eu 155	Ser	Ser	Met
Gly	Val 1160		Pro	Ser	Pro	Val		nr Al	la Th	nr Al		la . 170	Ala	Ala .	Ala
Ser	Ala 1175		Ala	a Ala	Сув	Ala 118		nr Th	nr Al	La Va		la . 185	Ala .	Ala .	Ala

Val	Ser 1190	Gly	Val	Ala	Asp	Gly 1195	Asp	Ala	Arg	Arg	Val 1200		Asp	Glu
Leu	Asn 1205	Gly	Asn	Ala	Lys	Pro 1210		Pro	Pro	Pro	Arg 1215	Asp	His	Leu
Arg	Val 1220	Glu	Lys	Asp	Gly	Arg 1225	Leu	Val	Asn	CAa	Ser 1230		Ala	Pro
Gln	Leu 1235	Pro	Asp	Arg	Arg	Ala 1240		Gly	Asn	Ala	Ser 1245	Ser	Gly	Ser
Ser	Gly 1250	Ala	Thr	Thr	His	Pro 1255	Leu	Gln	His	Gln	Gln 1260		Ala	Gln
Ile	Val 1265	Glu	Pro	Thr	Leu	Glu 1270	Gln	Leu	Asp	Ser	Ile 1275	Lys	ГÀЗ	Tyr
Gln	Glu 1280	Gln	Leu	Arg	Arg	Arg 1285	Arg	Glu	Glu	Glu	Glu 1290	Arg	Ile	Ala
Gln	Gln 1295	Asn	Glu	Phe	Leu	Arg 1300		Ser	Leu	Arg	Gly 1305	Ser	Arg	ГÀа
Leu	Lys 1310	Ala	Leu	Gln	Asp	Thr 1315	Ala	Thr	Pro	Gly	Lys 1320		Val	Ala
Gln	Gln 1325	Gln	Gln	Gln	Ala	Thr 1330		Ala	Thr	Gln	Val 1335	Val	Gly	Val
Glu	Asn 1340	Glu	Ala	Tyr	Leu	Pro 1345	Asp	Glu	Asp	Gln	Pro 1350		Ala	Glu
Gln	Ile 1355	Asp	Gly	Tyr	Gly	Glu 1360		Ile	Ala	Ala	Leu 1365	Thr	Arg	Leu
Gln	Asn 1370	Gln	Leu	Ser	Lys	Ser 1375	Gly	Leu	Ser	Thr	Leu 1380		Gly	Arg
Val	Ser 1385	Ala	Ala	His	Ser	Val 1390		Ala	Ser	Ala	Ser 1395	Val	Ala	His
Val	Leu 1400	Ala	Ala	Arg	Thr	Ala 1405		Leu	Gln	Arg	Arg 1410		Ser	Arg
Val	Ser 1415	Gly	Pro	Leu	His	His 1420		Ser	Leu	Gly	Leu 1425	Gln	ГÀз	Asp
Ile	Val 1430	Glu	Leu	Leu	Thr	Gln 1435	Ser	Asn	Thr	Ala	Ala 1440		Ile	Glu
Leu	Gly 1445	Asn	Leu	Leu	Thr	Ser 1450	His	Glu	Met	Glu	Gly 1455	Leu	Leu	Leu
	His 1460	_	Arg	Ile		Asn 1465		Thr	Asp		Thr 1470		Ser	Pro
Thr	Pro 1475	Thr	Pro	Thr	Pro	Ala 1480	Ile	Gly	Ala	Ala	Thr 1485	Gly	Ser	Thr
Leu	Ser 1490	Ser	Pro	Val	Ala	Gly 1495	Pro	Lys	Arg	Asn	Leu 1500	Gly	Met	Val
Val	Pro 1505	Pro	Pro	Val	Val	Pro 1510	Pro	Pro	Leu	Ala	Gln 1515	Arg	Gly	Ala
Met	Pro 1520	Leu	Pro	Arg	Gly	Glu 1525	Ser	Pro	Pro	Pro	Val 1530	Pro	Met	Pro
Pro	Leu 1535	Ala	Thr	Met	Pro	Met 1540	Ser	Met	Pro	Val	Asn 1545	Leu	Pro	Met
Ser	Ala 1550	CÀa	Phe	Gly	Thr	Leu 1555	Asn	Asp	Gln	Asn	Asp 1560	Asn	Ile	Arg
Ile	Ile 1565	Gln	Ile	Glu	Lys	Ser 1570		Glu	Pro	Leu	Gly 1575	Ala	Thr	Val
Arg	Asn	Glu	Gly	Glu	Ala	Val	Val	Ile	Gly	Arg	Ile	Val	Arg	Gly

	1580					1585					1590			
Gly	Ala 1595	Ala	Glu	Lys	Ser	Gly 1600	Leu	Leu	His	Glu	Gly 1605	Asp	Glu	Ile
Leu	Glu 1610	Val	Asn	Gly	Gln	Glu 1615	Leu	Arg	Gly	Lys	Thr 1620	Val	Asn	Glu
Val	Cys 1625	Ala	Leu	Leu	Gly	Ala 1630	Met	Gln	Gly	Thr	Leu 1635	Thr	Phe	Leu
Ile	Val 1640	Pro	Ala	Gly	Ser	Pro 1645	Pro	Ser	Val	Gly	Val 1650	Met	Gly	Gly
Thr	Thr 1655	Gly	Ser	Gln	Leu	Ala 1660	Gly	Leu	Gly	Gly	Ala 1665	His	Arg	Asp
Thr	Ala 1670	Val	Leu	His	Val	Arg 1675	Ala	His	Phe	Asp	Tyr 1680	Asp	Pro	Glu
Asp	Asp 1685	Leu	Tyr	Ile	Pro	Cys 1690	Arg	Glu	Leu	Gly	Ile 1695	Ser	Phe	Gln
Lys	Gly 1700	Asp	Val	Leu	His	Val 1705	Ile	Ser	Arg	Glu	Asp 1710	Pro	Asn	Trp
Trp	Gln 1715	Ala	Tyr	Arg	Glu	Gly 1720	Glu	Glu	Asp	Gln	Thr 1725	Leu	Ala	Gly
Leu	Ile 1730	Pro	Ser	Gln	Ser	Phe 1735	Gln	His	Gln	Arg	Glu 1740	Thr	Met	ГÀа
Leu	Ala 1745	Ile	Ala	Glu	Glu	Ala 1750	Gly	Leu	Ala	Arg	Ser 1755	Arg	Gly	ГÀа
Asp	Gly 1760	Ser	Gly	Ser	ГЛа	Gly 1765	Ala	Thr	Leu	Leu	Cys 1770	Ala	Arg	Lys
Gly	Arg 1775	Lys	Lys	Lys	Lys	Lys 1780	Ala	Ser	Ser	Glu	Ala 1785	Gly	Tyr	Pro
Leu	Tyr 1790	Ala	Thr	Thr	Ala	Pro 1795	Asp	Glu	Thr	Asp	Pro 1800	Glu	Glu	Ile
Leu	Thr 1805	Tyr	Glu	Glu	Val	Ala 1810	Leu	Tyr	Tyr	Pro	Arg 1815	Ala	Thr	His
ГÀЗ	Arg 1820	Pro	Ile	Val	Leu	Ile 1825	Gly	Pro	Pro	Asn	Ile 1830	Gly	Arg	His
Glu	Leu 1835	Arg	Gln	Arg	Leu	Met 1840	Ala	Asp	Ser	Glu	Arg 1845	Phe	Ser	Ala
Ala	Val 1850	Pro	His	Thr	Ser	Arg 1855	Ala	Arg	Arg	Glu	Gly 1860	Glu	Val	Pro
Gly	Val 1865	Asp	Tyr	His	Phe	Ile 1870	Thr	Arg	Gln	Ala	Phe 1875	Glu	Ala	Asp
Ile	Leu 1880	Ala	Arg	Arg	Phe	Val 1885	Glu	His	Gly	Glu	Tyr 1890	Glu	Lys	Ala
Tyr	Tyr 1895	Gly	Thr	Ser	Leu	Glu 1900	Ala	Ile	Arg	Thr	Val 1905	Val	Ala	Ser
Gly	Lys 1910	Ile	CAa	Val	Leu	Asn 1915	Leu	His	Pro	Gln	Ser 1920	Leu	Lys	Leu
Leu	Arg 1925	Ala	Ser	Asp	Leu	Lys 1930	Pro	Tyr	Val	Val	Leu 1935	Val	Ala	Pro
Pro	Ser 1940	Leu	Asp	Lys	Leu	Arg 1945	Gln	Lys	Lys	Leu	Arg 1950	Asn	Gly	Glu
Pro	Phe 1955	Lys	Glu	Glu	Glu	Leu 1960	Lys	Asp	Ile	Ile	Ala 1965	Thr	Ala	Arg
Asp	Met 1970	Glu	Ala	Arg	Trp	Gly 1975	His	Leu	Phe	Asp	Met 1980	Ile	Ile	Ile

-continued

Asn Asn Asp Thr Glu Arg Ala Tyr His Gln Leu Leu Ala Glu Ile 1990 Asn Ser Leu Glu Arg Glu Pro Gln Trp Val Pro Ala Gln Trp Val 2000 2005 2010 His Asn Asn Arg Asp Glu 2015 <210> SEQ ID NO 8 <211> LENGTH: 871 <212> TYPE: PRT <213 > ORGANISM: Drosophila melanogaster <400> SEQUENCE: 8 Met His Leu Ser Ala Asp Ile Ser Ser Ala Leu Gln Gln Ile Glu Ala Thr Ala Glu Ser Leu Ser Thr Ile Leu Gly Ile Leu Gln Asp Pro Val Phe Arg Thr Ile Val His Val Gln Asp Ser Leu Ser Glu Leu Asn Ala Gln Leu Ala Gln His Pro Ser Met Leu Pro Asn Asp Phe Asp Ile Asp 75 Val Ala Gly Asn Leu Val Leu Ser Leu Asn Gly Gly Glu Val Met Tyr Asp Phe Asp Glu Gln Arg Ser Ser Ser His Ser His Ser Ala Pro Gly Ser Pro Asp Lys Ser Gly Gly Val Gly Glu Glu Pro Arg Pro Gln Ser 120 Gln Asn Ser Lys Gly Ala Gly Val Ala Asp Leu Tyr Ala Thr Asp Tyr 135 Ala Gln Ile Gln Ala Ile Glu Leu Val Asn Asp Gly Thr Gly Leu Gly Phe Gly Ile Ile Gly Ala Arg Asn Ser Gly Val Ile Val Lys Thr Ile Leu Pro Gly Gly Val Ala Asp Lys Asp Gly Arg Leu Arg Ser Gly Asp 185 His Ile Leu Gln Ile Gly Asp Val Asn Leu His Glu Met Val Ser Glu Gln Val Ala Ala Val Leu Arg Gln Ser Gly Thr His Val Arg Leu Val Val Ala Arg Pro Val Glu Gln Ser Val Pro Thr Pro Gln Tyr Ala Leu Glu Pro Gly Thr Ala Val Val Pro Thr Arg Val Leu Val Asp Pro Ala Glu Leu Glu Arg Tyr Leu Ile Ser Thr Gly Tyr Pro Glu Ile Phe Gly 265 Glu Ser Ser Thr Ala Ser Thr Pro Gln Thr Thr Thr Glu Asp Asp Arg 280 Phe Val Tyr Arg Gly Glu Thr Ser Met Leu Ile Asp Pro Asn Ile Asp Leu Glu Glu Leu Leu Ala Leu Pro Glu Thr Glu Lys Leu Gln Val Glu 315

Leu Lys Lys Asp Ala Asn Gly Leu Gly Ile Thr Ile Ala Gly Tyr Val

_															
				325					330					335	
CÀa	Glu	ГÀз	Glu 340	Glu	Leu	Ser	Gly	Ile 345	Phe	Val	ГÀа	Ser	Val 350	Ser	Pro
Gly	Ser	Ala 355	Ala	Asp	Leu	Ser	Gly 360	Arg	Ile	Arg	Val	Asn 365	Asp	Arg	Ile
Ile	Glu 370	Val	Asp	Gly	Gln	Ser 375	Leu	Gln	Gly	Tyr	Ser 380	Asn	His	Gln	Ala
Val 385	Glu	Leu	Leu	Lys	390 Lys	Ser	Gly	Gln	Val	Val 395	Asn	Leu	Arg	Leu	Glu 400
Arg	Tyr	Leu	Arg	Gly 405	Pro	ГÀа	Phe	Glu	Gln 410	Leu	Gln	Gln	Ala	Ile 415	Ala
Ala	Asn	Asp	Lys 420	Leu	Pro	Ser	Ser	Ala 425	Pro	Gly	Thr	Pro	Ser 430	Arg	Ala
Pro	Met	Pro 435	Thr	Pro	Val	Ala	Thr 440	Thr	Ser	Ser	Ala	Thr 445	Thr	Thr	Pro
Ser	Arg 450	Ser	Ile	Thr	Arg	Glu 455	Leu	Glu	Glu	Glu	Ala 460	Leu	Pro	Ala	Pro
Glu 465	Ala	Phe	Met	Thr	Thr 470	Pro	Pro	Ser	Val	Thr 475	Thr	Met	Thr	Thr	Thr 480
Thr	Leu	Ser	Ser	Phe 485	Gly	Ala	Gly	Lys	Gln 490	Leu	Val	Ala	Val	Arg 495	Asp
Ser	Leu	Asp	Gly 500	Ser	Thr	Lys	Ile	Ile 505	Pro	Thr	Glu	Val	Val 510	Pro	Leu
Ala	Asp	Lys 515	Thr	Glu	Ala	Lys	Asn 520	Ser	Gly	Val	Ile	Thr 525	Arg	His	Lys
Tyr	Tyr 530	Thr	Asp	Pro	Glu	Leu 535	Ser	Asp	Asp	Ala	Glu 540	Thr	Glu	Ile	Ile
Arg 545	ГÀа	Trp	Gln	ràa	Ile 550	Val	Gly	Ser	Asp	Val 555	Glu	Val	Ile	Val	Ala 560
Gln	Ile	ГÀз	Lys	Phe 565	Ala	Val	Gly	Gly	Leu 570	Gly	Ile	Ser	Leu	Glu 575	Gly
Thr	Val	Asp	Val 580	Glu	Gly	Gly	Arg	Glu 585	Val	Arg	Pro	His	His 590	Tyr	Ile
Arg	Ser	Ile 595	Leu	Pro	Asp	Gly	Pro 600	Val	Gly	Val	Asn	Gly 605	Val	Leu	Arg
Ser	Gly 610	Asp	Glu	Leu	Leu	Glu 615	Val	Asn	Gly	Glu	Arg 620	Leu	Leu	Gly	Met
Asn 625	His	Leu	Glu	Val	Val 630	Ala	Ile	Leu	Lys	Glu 635	Leu	Pro	Leu	Asp	Val 640
Arg	Met	Val	Cys	Gly 645	Arg	Asn	Arg	Asn	Ser 650	Ser	Leu	Leu	Pro	Phe 655	Ser
Asp	Asp	Thr	Leu 660	Lys	ГÀа	Leu	Ser	Asn 665	Asn	Phe	Glu	Asn	Leu 670	Leu	Pro
Ala	Thr	Asp 675	Arg	Leu	Val	Lys	Ala 680	Lys	Ser	Asp	Gly	Ser 685	Leu	Ala	Thr
Ala	Gly 690	Ser	Val	Ala	Asp	Gly 695	Asp	Ser	Val	Ala	Ala 700	Ala	Ala	Ala	Ser
Phe 705	Ser	Lys	Leu	Lys	Ser 710	Arg	Ser	Leu	Glu	Pro 715	Leu	Thr	Gly	Leu	Ala 720
Met	Trp	Ser	Ser	Gln 725	Pro	Gln	Ile	Ile	Glu 730	Leu	Val	Lys	Gly	Asp 735	Arg
Gly	Leu	Gly	Phe	Ser	Ile	Leu	Asp	Tyr 745	Gln	Asp	Pro	Leu	Asp 750	Pro	Asn

-continued

Asp Thr Leu Ile Val Ile Arg Ser Leu Val Pro Gly Gly Val Ala Gln 760 Leu Asp Gly Arg Leu Ile Pro Gly Asp Arg Leu Leu Phe Val Asn Ser Ile Asn Leu Glu Asn Ala Ser Leu Asp Gln Ala Val Gln Ala Leu Lys Gly Ala Ser Lys Gly Val Val Arg Ile Gly Val Ala Lys Pro Leu Pro Met Thr Asp Asn Ser Leu Lys Ala Cys Ser Asn Ala Ser Thr Thr Ser Glu Glu Thr Leu Asp Ala Gln Pro Ser Pro Pro Ala Leu Pro Thr Val Ala Pro Pro Ala Met Pro Pro Ser Ala Ser Met Gly Ala Glu Pro Asp Leu Ile Pro Asp Trp Arg Asn <210> SEO ID NO 9 <211> LENGTH: 246 <212> TYPE: PRT <213> ORGANISM: Drosophila melanogaster <400> SEOUENCE: 9 Met Ala Asp Asn Ala Glu Pro Leu Thr Leu Ser Arg Asp Val Lys Arg 10 Ser Ile Glu Leu Leu Glu Lys Leu Gln Ala Ser Gly Asp Phe Pro Thr Thr Lys Leu Ala Ala Leu Gln Lys Val Leu Asn Ser Asp Phe Met Thr 40 Ser Val Arg Glu Val Tyr Glu His Val Tyr Glu Thr Val Asp Ile Gln Gly Ser His Asp Val Arg Ala Ser Ala Thr Ala Lys Ala Thr Val Ala Ala Phe Ala Ala Ser Glu Gly His Ala His Pro Arg Val Val Glu Leu Pro Lys Thr Glu Glu Gly Lys Thr Arg Pro Tyr Glu Leu Arg Ile Glu 105 Gly Ile Pro Leu Tyr His Lys Thr Asn Thr Leu Ile Val Lys Val Tyr Arg Pro Arg Ile Tyr Val Ser Ile Ile His Leu Ile Trp Lys Ala Leu Ser Ile Phe Asn Phe Cys Phe Ser Gly Leu Gly Phe Asn Val Met Gly Gly Lys Glu Gln Asn Ser Pro Ile Tyr Ile Ser Arg Ile Ile Pro Gly Gly Val Ala Asp Arg His Gly Gly Leu Lys Arg Gly Asp Gln Leu Leu 185 Ser Val Asn Gly Val Ser Val Glu Gly Glu Asn His Glu Lys Ala Val 200 Glu Leu Leu Lys Gln Ala Val Gly Ser Val Lys Leu Val Val Arg Tyr 215 Thr Pro Lys Val Leu Glu Glu Met Glu Met Arg Phe Asp Lys Gln Arg Asn Thr Arg Arg Arg Gln

245

<210> SEQ ID NO 10 <211> LENGTH: 5954 <212> TYPE: DNA

<213 > ORGANISM: Artificial <220 > FEATURE:

<223> OTHER INFORMATION: Par6_AcGFP DNA sequence including all "natural" control elements

<400> SEQUENCE: 10

60	tgtgcgtgcg	cctgcgctgg	ttgatgcggg	tgtgtctgtg	tgtgcgtgtg	geggeegege
120	tetteggete	gcagctgagc	gcttattcct	agtttcgtca	tcaaggtttc	aatcgctgtc
180	tcccaaaata	ggaaaagtgg	cagctgcctt	cgccttttcc	gcaatttcac	teggatagte
240	ctccttatgc	tgcgtgtaga	actattcctt	gctggcttta	tgcgttgtgg	tatgaatatg
300	acacgcactc	ttatgttttc	ttgtttgggt	teettgtetg	cccgctagtc	ttcctttggc
360	aatcttgatt	tcctctcgaa	gtatagcacc	tatgtatttg	tatatatata	gtttaaagac
420	tgaaatcgat	gcttttgttt	ttcgttggtt	aaaattttgt	ctagcgactt	tttagttttt
480	cacatctaaa	ctctggcgtt	cctatctcga	tgctgtgtga	ttgtcgtagc	tcgctcaact
540	aacagtttca	aacacacaaa	gctcgacaac	gacacttcac	tgtctaattg	caaattcagt
600	gtgctggcgt	gggcatattc	gctacaattg	ctggcgctgc	accctcgtcg	ttttacagta
660	cgtctttgat	atttaaaaaa	ttatttattt	aagcgggttt	ttcgatttaa	cttgcctgcc
720	ctctttttc	acagttaagc	ttgtcttgta	tagctaattc	catttaaata	taaaactgag
780	gcccacacaa	gatccaccca	cgcatctgaa	gcaaatgtag	cagccacttt	gtgcaaacag
840	atatatcgat	gactctatcg	tggctgctca	cgcagcaaca	tctacactaa	acaaactgtc
900	acaaacaaag	atatttaaaa	actctgggaa	tgcctaagtt	catcggttca	atatgcacaa
960	ctttgctagc	aattcaaaac	tgttgtgata	aaaaacttat	tattaaaaaa	aacataccgt
1020	ttgttgttta	gatactttca	agtcttttta	attatttcta	acaaattatt	tatattgaaa
1080	tattttggtt	tgaaatggta	tttagaaaac	tttgtggtat	ttatagcata	aatctattgc
1140	tgcctaccaa	taaccgatag	taccatccga	ctggatctat	cacggtcact	ttgcattccc
1200	taattagttt	tttttttatt	atccatccat	cgataggttc	cgatagtgcc	tatcgaagta
1260	tccccgccat	ctatcgtcgc	cggcccccca	aatttattgg	ttctaactct	taatttagat
1320	cgatttcgat	cgtatcggtt	tegeateggg	cggtttcggt	cactttggtt	cggtacgctg
1380	gtgtgtgagg	gttttgtgtt	caactgccgt	ctgcggaact	agatcagaat	cctgaagatc
1440	atgtcgaaga	atcggagaaa	gatcgggcgg	gtgcactctt	aaaactgtca	aacggagagg
1500	gaggtgaaat	gaatctaatc	ccagtgacac	gcaacggcgg	cacaacgtcc	acaagataaa
1560	cggcgctgag	cccctttctg	ggattccacg	cgtggccccc	tcctaacttt	cgaaggtgag
1620	tgtgcgtgga	attggagttc	aatagcttaa	gaatgggatt	atgcgctcag	ctgctgattc
1680	tatctgttga	tgggaactcc	tctaccaatt	gagcaatgtg	ttagtctgag	aagggggtct
1740	ggtgtgagga	tggagtgcga	gattaatgct	ccagagcagg	gtcaaagcgg	gctcgattgt
1800	cgaatgcatc	tttgcccttg	aaagtgacaa	aagcacccca	tccatcttag	gcaactggtt
1860	attgcttggg	aacacccttt	ggattgttgc	gctctgatat	gaatteetga	ttacttgtcg
1920	ttcgttcatt	actaccctgt	ttactcaaaa	ctgttgcgcc	gaaaaccaat	ctctttgcct
1980	caattcttca	agtcaaggta	gttattaatt	ggaaacttca	ttacagagaa	ttctgtaatt

-continued

agataaactc	cagtaatagc	tataaggcag	tagatgtact	gcaattcagt	gaaggtccca	2040
ttaaattagt	aaaatgtctg	catacaattg	aatcaacagg	tgatgctgat	gaacaaacta	2100
tacgggtttc	aaaagattca	geceetttae	taatcaatac	gtatccttta	gttcgatgca	2160
gagtttcgga	ggtggagctt	caagcgaaat	gaggcggagc	agagettega	caaattcgca	2220
tccctcattg	agcagctgca	caagctgacc	aacatccagt	ttctcatact	ctacatcgat	2280
ccgcgggaca	atgatctgtt	gccgattaac	aacgacgata	acttcggccg	ggccctgaaa	2340
acagcacgtc	cacttttacg	ggtcattgtg	cagcgaaagg	gtgagtatgg	gtatgcataa	2400
gatacaatac	gagccactca	accacaatct	tttcgttcac	tctatagatg	atcttaatga	2460
gtactctggc	tttggaacga	tgaaaccgag	aaacctcatc	ggcagcatac	tgatgggcca	2520
tacgccagtg	aagacaaagg	cgccatcgat	atccataccg	cacgatttcc	gtcaagtctc	2580
ggccattata	gatgtggata	tagtgccgga	aacgcataga	agagtgcggc	tactgaagca	2640
cggcagcgat	aagcccctgg	gattctacat	acgggatggc	acctctgtca	gggtgacggc	2700
cagtgggcta	gagaagcagc	cgggcatttt	tatatcccgt	ttggttccgg	geggtetgge	2760
cgaaagtact	ggcctgctgg	ccgtcaacga	tgaggtgatc	gaggtaaatg	gcatcgaagt	2820
ggctggcaag	actctggatc	aagtcaccga	catgatggtg	gccaacagct	ccaatctgat	2880
aatcaccgtg	aagccggcca	atcagcgcac	actgacgtcc	acacatcgcg	gatccttttc	2940
aaggaacagc	cagctgtcca	gtgggtcaca	tcacactaat	aatacaaaca	cctccgacga	3000
gatcgagcac	gacgatcagg	acgatattgt	ggacttaacg	ggcgtcaccc	tcgacgagag	3060
tccaacgtcc	acgtcagccg	gcaatcacaa	ccatcagccg	ccattatcct	catcaccctc	3120
gtcgcaccac	cagcaggcag	cctccaatgc	gtccacgata	atggccagcg	atgtcaagga	3180
tggagtgctg	catttgatgg	tgagcaaggg	cgccgagctg	ttcaccggca	tcgtgcccat	3240
cctgatcgag	ctgaatggcg	atgtgaatgg	ccacaagttc	agcgtgagcg	gcgagggcga	3300
gggcgatgcc	acctacggca	agctgaccct	gaagttcatc	tgcaccaccg	gcaagctgcc	3360
tgtgccctgg	cccaccctgg	tgaccaccct	gagctacggc	gtgcagtgct	tctcacgcta	3420
ccccgatcac	atgaagcagc	acgacttctt	caagagcgcc	atgcctgagg	gctacatcca	3480
ggagcgcacc	atcttcttcg	aggatgacgg	caactacaag	tegegegeeg	aggtgaagtt	3540
cgagggcgat	accctggtga	atcgcatcga	gctgaccggc	accgatttca	aggaggatgg	3600
caacatcctg	ggcaataaga	tggagtacaa	ctacaacgcc	cacaatgtgt	acatcatgac	3660
cgacaaggcc	aagaatggca	tcaaggtgaa	cttcaagatc	cgccacaaca	tegaggatgg	3720
cagcgtgcag	ctggccgacc	actaccagca	gaataccccc	atcggcgatg	gccctgtgct	3780
gctgcccgat	aaccactacc	tgtccaccca	gagcgccctg	tccaaggacc	ccaacgagaa	3840
gcgcgatcac	atgatctact	teggettegt	gaccgccgcc	gccatcaccc	acggcatgga	3900
tgagctgtac	aagtagtagg	attaacccgg	cgatacagca	cctccagcag	acgcagccag	3960
aacttaagca	acggaaaacg	cgaattcatc	gctgagaagt	gcagaggatt	ttcagtttat	4020
cagacttaac	tttccttaag	atcgaataag	ttcgttaaac	tcgagtcaat	tatttaaagt	4080
tatacaagtt	aggccaactt	attcacatgt	acactgatcg	cttgtatatc	gctcacttac	4140
taaagcgact	gtcatagctc	aaccagccat	gatttgaaaa	gtcaccttat	aaaatctatt	4200
ggtattagcc	tgaaagcctg	attgattgag	taaacaacat	ateggecata	tcccattcat	4260
ttcttgttaa	tcctggccat	tcaaatttaa	cgttctgcaa	aatttccagt	ccgattgtag	4320
gtgagcaata	tataaaacac	gattgtatat	acatgtgtaa	tcatcatacg	actttcctcc	4380

-continued

atacattcca	cgaaacactc	aaagtcaaag	aaaacacacc	tattcatttg	cacgtttttg	4440
aatgcagtct	cttgttttta	tetttttee	tggcatatat	atatatgtgt	atttaaattt	4500
gtaagattta	cgtcttgtta	ttattcttgc	ttgttgtatt	agactagagt	gagacageta	4560
gaggagagag	tgaaatagag	agagggcatc	aaatgctgaa	ggcagatcaa	tttatttaac	4620
ttaaccattt	gaaacggcaa	taattgtaac	aaaatcacat	atacgagcac	gaataattta	4680
taaaaaaaaa	aaacattcca	ttttatgtac	tgtgacaagt	cggaaaagcc	taacaaaatt	4740
atatttcctg	atttgtaagc	cttgttttta	atttgagccg	atcattttgc	gtatatctgc	4800
tatgttttgt	ttagctcaat	ttcttatttt	ttcggcatta	ctcattatat	ctgtttattt	4860
taaaaaccat	ttgtaatttt	taacttttgt	tttttcgtca	ttgtgtccaa	tactcgtcca	4920
agttctttgt	tgtcattgtc	atcacttaga	gttatggaga	aaggatagaa	aaacgaggag	4980
ataaagttaa	caaaacgtta	agatacaaac	gaaacaccaa	cagcgccttc	gccttcaaga	5040
gagcaattcg	atacttttta	tatatataca	agagaatata	taaacgaata	caatctatgt	5100
tatgtacgta	cccctgtaca	cacaattgaa	ttgaagtctg	tgtattcgct	ttagtaaaat	5160
tgagaaaacg	ccactcacgg	cagatgggat	gcaatgcgat	ctgctcgact	tgaagttaac	5220
aatattaata	tttatgggtc	gcaacgggca	taactaaccc	catacgaacg	tgtaccctgg	5280
gtagatagca	agatctagga	tagacagcag	cgaatctgaa	actataacta	aatgcgtatc	5340
gccgcccaac	cactcccctc	atatacccat	ttcacatata	cccttgcatt	atcgagaaat	5400
ctgaacttac	atcgaacaaa	agtcgccaga	atatcccgat	ttccaagcaa	acgcatgtat	5460
atatatatat	atacaaaagc	taatgtgtat	tecegetaag	caactgaaaa	gaccgaaaag	5520
caaatcacga	aagaaaacct	tatattttga	tgtatgtatt	attattttt	aataaaccta	5580
agagaacttg	taaccgatct	ggtgtgtaat	tggtttttc	ctgggaggct	atagcaaaac	5640
aatgtaagtt	tattgtttat	atcacaacca	attcgaggcg	ttaaagtata	caaaaaagtt	5700
aaaaatgata	tteggtteet	gcatttataa	acgaaaaaat	tgtttccctc	tgtaagcaat	5760
acttttcaat	tcaactgaat	tgctttcact	tatttttagc	ttacaaaaat	caatttaaat	5820
acattagccg	ggccttaatc	aaaaaagatc	ttacatatac	ccttttgaag	actgcgaatt	5880
aaaaaaccag	ttaacgatat	agtttttgtt	ccatttgggg	attcgattta	ttcgaccact	5940
cttttggcgg	ccgc					5954
<220> FEATU	TH: 590 : PRT NISM: Artif: URE: R INFORMATIO		FP Protein :	Sequence		

Met Ser Lys Asn Lys Ile Asn Thr Thr Ser Ala Thr Ala Ala Ser Asp 1 $$ 5 $$ 10 $$ 15

Thr Asn Leu Ile Glu Val Lys Ser Lys Phe Asp Ala Glu Phe Arg Arg 20 25 30

Trp Ser Phe Lys Arg Asn Glu Ala Glu Gln Ser Phe Asp Lys Phe Ala 35 404045 40

Ser Leu Ile Glu Gln Leu His Lys Leu Thr Asn Ile Gln Phe Leu Ile 55

Leu Tyr Ile Asp Pro Arg Asp Asn Asp Leu Leu Pro Ile Asn Asp 65 70 75 80

Asp	Asn	Phe	Gly	Arg 85	Ala	Leu	Lys	Thr	Ala 90	Arg	Pro	Leu	Leu	Arg 95	Val
Ile	Val	Gln	Arg 100	Lys	Asp	Asp	Leu	Asn 105	Glu	Tyr	Ser	Gly	Phe 110	Gly	Thr
Met	Lys	Pro 115	Arg	Asn	Leu	Ile	Gly 120	Ser	Ile	Leu	Met	Gly 125	His	Thr	Pro
Val	130	Thr	Lys	Ala	Pro	Ser 135	Ile	Ser	Ile	Pro	His 140	Asp	Phe	Arg	Gln
Val 145	Ser	Ala	Ile	Ile	Asp 150	Val	Asp	Ile	Val	Pro 155	Glu	Thr	His	Arg	Arg 160
Val	Arg	Leu	Leu	Lys 165	His	Gly	Ser	Asp	Lys 170	Pro	Leu	Gly	Phe	Tyr 175	Ile
Arg	Asp	Gly	Thr 180	Ser	Val	Arg	Val	Thr 185	Ala	Ser	Gly	Leu	Glu 190	Lys	Gln
Pro	Gly	Ile 195	Phe	Ile	Ser	Arg	Leu 200	Val	Pro	Gly	Gly	Leu 205	Ala	Glu	Ser
Thr	Gly 210	Leu	Leu	Ala	Val	Asn 215	Aap	Glu	Val	Ile	Glu 220	Val	Asn	Gly	Ile
Glu 225	Val	Ala	Gly	Lys	Thr 230	Leu	Asp	Gln	Val	Thr 235	Asp	Met	Met	Val	Ala 240
Asn	Ser	Ser	Asn	Leu 245	Ile	Ile	Thr	Val	Lys 250	Pro	Ala	Asn	Gln	Arg 255	Thr
Leu	Thr	Ser	Thr 260	His	Arg	Gly	Ser	Phe 265	Ser	Arg	Asn	Ser	Gln 270	Leu	Ser
Ser	Gly	Ser 275	His	His	Thr	Asn	Asn 280	Thr	Asn	Thr	Ser	Asp 285	Glu	Ile	Glu
His	Asp 290	Asp	Gln	Asp	Asp	Ile 295	Val	Aap	Leu	Thr	Gly 300	Val	Thr	Leu	Asp
Glu 305	Ser	Pro	Thr	Ser	Thr 310	Ser	Ala	Gly	Asn	His 315	Asn	His	Gln	Pro	Pro 320
Leu	Ser	Ser	Ser	Pro 325	Ser	Ser	His	His	Gln 330	Gln	Ala	Ala	Ser	Asn 335	Ala
Ser	Thr	Ile	Met 340	Ala	Ser	Asp	Val	Lys 345	Asp	Gly	Val	Leu	His 350	Leu	Met
Val	Ser	355 Lys	Gly	Ala	Glu	Leu	Phe 360	Thr	Gly	Ile	Val	Pro 365	Ile	Leu	Ile
Glu	Leu 370	Asn	Gly	Asp	Val	Asn 375	Gly	His	Lys	Phe	Ser 380	Val	Ser	Gly	Glu
Gly 385	Glu	Gly	Aap	Ala	Thr 390	Tyr	Gly	Lys	Leu	Thr 395	Leu	Lys	Phe	Ile	Cys 400
Thr	Thr	Gly	Lys	Leu 405	Pro	Val	Pro	Trp	Pro 410	Thr	Leu	Val	Thr	Thr 415	Leu
Ser	Tyr	Gly	Val 420	Gln	CAa	Phe	Ser	Arg 425	Tyr	Pro	Asp	His	Met 430	Lys	Gln
His	Asp	Phe 435	Phe	Lys	Ser	Ala	Met 440	Pro	Glu	Gly	Tyr	Ile 445	Gln	Glu	Arg
Thr	Ile 450	Phe	Phe	Glu	Asp	Asp 455	Gly	Asn	Tyr	Lys	Ser 460	Arg	Ala	Glu	Val
Lys 465	Phe	Glu	Gly	Asp	Thr 470	Leu	Val	Asn	Arg	Ile 475	Glu	Leu	Thr	Gly	Thr 480
Asp	Phe	Lys	Glu	Asp 485	Gly	Asn	Ile	Leu	Gly 490	Asn	Lys	Met	Glu	Tyr 495	Asn

-continued

Tyr Asn Ala His Asn Val Tyr Ile Met Thr Asp Lys Ala Lys Asn Gly 505 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Ile Tyr Phe Gly Phe Val Thr Ala Ala Ile Thr His Gly Met Asp Glu Leu Tyr Lys <210> SEQ ID NO 12 <211> LENGTH: 843 <212> TYPE: PRT <213> ORGANISM: Drosophila melanogaster <400> SEQUENCE: 12 Met Ser Tyr Met Pro Ala Gln Asn Arg Thr Met Ser His Asn Asn Gln Tyr Asn Pro Pro Asp Leu Pro Pro Met Val Ser Ala Lys Glu Gln Thr 25 Leu Met Trp Gln Gln Asn Ser Tyr Leu Gly Asp Ser Gly Ile His Ser Gly Ala Val Thr Gln Val Pro Ser Leu Ser Gly Lys Glu Asp Glu Glu Met Glu Gly Asp Pro Leu Met Phe Asp Leu Asp Thr Gly Phe Pro Gln 70 Asn Phe Thr Gln Asp Gln Val Asp Asp Met Asn Gln Gln Leu Ser Gln 90 Thr Arg Ser Gln Arg Val Arg Ala Ala Met Phe Pro Glu Thr Leu Glu Glu Gly Ile Glu Ile Pro Ser Thr Gln Phe Asp Pro Gln Gln Pro Thr 120 Ala Val Gln Arg Leu Ser Glu Pro Ser Gln Met Leu Lys His Ala Val Val Asn Leu Ile Asn Tyr Gln Asp Asp Ala Glu Leu Ala Thr Arg Ala Ile Pro Glu Leu Ile Lys Leu Leu Asn Asp Glu Asp Gln Val Val Ser Gln Ala Ala Met Met Val His Gln Leu Ser Lys Lys Glu Ala Ser Arg His Ala Ile Met Asn Ser Pro Gln Met Val Ala Ala Leu Val Arg Ala Ile Ser Asn Ser Asn Asp Leu Glu Ser Thr Lys Ala Ala Val Gly Thr Leu His Asn Leu Ser His His Arg Gln Gly Leu Leu Ala Ile Phe 235 Lys Ser Gly Gly Ile Pro Ala Leu Val Lys Leu Leu Ser Ser Pro Val Glu Ser Val Leu Phe Tyr Ala Ile Thr Thr Leu His Asn Leu Leu Leu 265 His Gln Asp Gly Ser Lys Met Ala Val Arg Leu Ala Gly Gly Leu Gln 280

Lys	Met 290	Val	Thr	Leu	Leu	Gln 295	Arg	Asn	Asn	Val	Tys	Phe	Leu	Ala	Ile
Val 305	Thr	Asp	Сув	Leu	Gln 310		Leu	Ala	Tyr	Gly 315	Asn	Gln	Glu	Ser	Lys 320
Leu	Ile	Ile	Leu	Ala 325	Ser	Gly	Gly	Pro	Asn 330	Glu	Leu	Val	Arg	Ile 335	Met
Arg	Ser	Tyr	Asp 340	Tyr	Glu	Lys	Leu	Leu 345	Trp	Thr	Thr	Ser	Arg 350	Val	Leu
ГÀа	Val	Leu 355	Ser	Val	Cya	Ser	Ser 360	Asn	Lys	Pro	Ala	Ile 365	Val	Asp	Ala
Gly	Gly 370	Met	Gln	Ala	Leu	Ala 375	Met	His	Leu	Gly	Asn 380	Met	Ser	Pro	Arg
Leu 385	Val	Gln	Asn	Сла	Leu 390	Trp	Thr	Leu	Arg	Asn 395	Leu	Ser	Asp	Ala	Ala 400
Thr	Lys	Val	Glu	Gly 405	Leu	Glu	Ala	Leu	Leu 410	Gln	Ser	Leu	Val	Gln 415	Val
Leu	Gly	Ser	Thr 420	Asp	Val	Asn	Val	Val 425	Thr	Cys	Ala	Ala	Gly 430	Ile	Leu
Ser	Asn	Leu 435	Thr	Cya	Asn	Asn	Gln 440	Arg	Asn	Lys	Ala	Thr 445	Val	Cys	Gln
Val	Gly 450	Gly	Val	Aap	Ala	Leu 455	Val	Arg	Thr	Ile	Ile 460	Asn	Ala	Gly	Asp
Arg 465	Glu	Glu	Ile	Thr	Glu 470	Pro	Ala	Val	Сув	Ala 475	Leu	Arg	His	Leu	Thr 480
Ser	Arg	His	Val	Asp 485	Ser	Glu	Leu	Ala	Gln 490	Asn	Ala	Val	Arg	Leu 495	Asn
Tyr	Gly	Leu	Ser 500	Val	Ile	Val	Lys	Leu 505	Leu	His	Pro	Pro	Ser 510	Arg	Trp
Pro	Leu	Ile 515	ГÀз	Ala	Val	Ile	Gly 520	Leu	Ile	Arg	Asn	Leu 525	Ala	Leu	СЛа
Pro	Ala 530	Asn	His	Ala	Pro	Leu 535	Arg	Glu	His	Gly	Ala 540	Ile	His	His	Leu
Val 545	Arg	Leu	Leu	Met	Arg 550	Ala	Phe	Gln	Asp	Thr 555	Glu	Arg	Gln	Arg	Ser 560
Ser	Ile	Ala	Thr	Thr 565	Gly	Ser	Gln	Gln	Pro 570	Ser	Ala	Tyr	Ala	Asp 575	Gly
Val	Arg	Met	Glu 580	Glu	Ile	Val	Glu	Gly 585	Thr	Val	Gly	Ala	Leu 590	His	Ile
Leu	Ala	Arg 595	Glu	Ser	His	Asn	Arg 600	Ala	Leu	Ile	Arg	Gln 605	Gln	Ser	Val
Ile	Pro 610	Ile	Phe	Val	Arg	Leu 615	Leu	Phe	Asn	Glu	Ile 620	Glu	Asn	Ile	Gln
Arg 625	Val	Ala	Ala	Gly	Val 630	Leu	CÀa	Glu	Leu	Ala 635	Ala	Asp	ГÀа	Glu	Gly 640
Ala	Glu	Ile	Ile	Glu 645	Gln	Glu	Gly	Ala	Thr 650	Gly	Pro	Leu	Thr	Asp 655	Leu
Leu	His	Ser	Arg 660	Asn	Glu	Gly	Val	Ala 665	Thr	Tyr	Ala	Ala	Ala 670	Val	Leu
Phe	Arg	Met 675	Ser	Glu	Asp	Lys	Pro 680	Gln	Asp	Tyr	Lys	Lys 685	Arg	Leu	Ser
Ile	Glu 690	Leu	Thr	Asn	Ser	Leu 695	Leu	Arg	Glu	Asp	Asn 700	Asn	Ile	Trp	Ala

-continued

Asn Ala Asp Leu Gly Met Gly Pro Asp Leu Gln Asp Met Leu Gly Pro 710 715 Glu Glu Ala Tyr Glu Gly Leu Tyr Gly Gln Gly Pro Pro Ser Val His Ser Ser His Gly Gly Arg Ala Phe His Gln Gln Gly Tyr Asp Thr Leu Pro Ile Asp Ser Met Gln Gly Leu Glu Ile Ser Ser Pro Val Gly Gly Gly Gly Ala Gly Gly Ala Pro Gly Asn Gly Gly Ala Val Gly Gly Ala Ser Gly Gly Gly Asn Ile Gly Ala Ile Pro Pro Ser Gly Ala Pro Thr Ser Pro Tyr Ser Met Asp Met Asp Val Gly Glu Ile Asp Ala Gly Ala Leu Asn Phe Asp Leu Asp Ala Met Pro Thr Pro Pro Asn Asp Asn Asn Asn Leu Ala Ala Trp Tyr Asp Thr Asp Cys 835 840 <210> SEQ ID NO 13 <211> LENGTH: 781 <212> TYPE: PRT <213 > ORGANISM: Drosophila melanogaster <400> SEOUENCE: 13 Met Ala Thr Gln Ala Asp Leu Met Glu Leu Asp Met Ala Met Glu Pro 10 Asp Arg Lys Ala Ala Val Ser His Trp Gln Gln Gln Ser Tyr Leu Asp Ser Gly Ile His Ser Gly Ala Thr Thr Thr Ala Pro Ser Leu Ser Gly 40 Lys Gly Asn Pro Glu Glu Glu Asp Val Asp Thr Ser Gln Val Leu Tyr Glu Trp Glu Gln Gly Phe Ser Gln Ser Phe Thr Gln Glu Gln Val Ala Asp Ile Asp Gly Gln Tyr Ala Met Thr Arg Ala Gln Arg Val Arg Ala Ala Met Phe Pro Glu Thr Leu Asp Glu Gly Met Gln Ile Pro Ser Thr Gln Phe Asp Ala Ala His Pro Thr Asn Val Gln Arg Leu Ala Glu Pro Ser Gln Met Leu Lys His Ala Val Val Asn Leu Ile Asn Tyr Gln Asp Asp Ala Glu Leu Ala Thr Arg Ala Ile Pro Glu Leu Thr Lys Leu Leu 150 155 Asn Asp Glu Asp Gln Val Val Asn Lys Ala Ala Val Met Val His Gln Leu Ser Lys Lys Glu Ala Ser Arg His Ala Ile Met Arg Ser Pro 185 Gln Met Val Ser Ala Ile Val Arg Thr Met Gln Asn Thr Asn Asp Val Glu Thr Ala Arg Cys Thr Ala Gly Thr Leu His Asn Leu Ser His His 215 220 Arg Glu Gly Leu Leu Ala Ile Phe Lys Ser Gly Gly Ile Pro Ala Leu 230 235

Val	Lys	Met	Leu	Gly 245	Ser	Pro	Val	Asp	Ser 250	Val	Leu	Phe	Tyr	Ala 255	Ile
Thr	Thr	Leu	His 260	Asn	Leu	Leu	Leu	His 265	Gln	Glu	Gly	Ala	Lys 270	Met	Ala
Val	Arg	Leu 275	Ala	Gly	Gly	Leu	Gln 280	Lys	Met	Val	Ala	Leu 285	Leu	Asn	ГЛЗ
Thr	Asn 290	Val	Lys	Phe	Leu	Ala 295	Ile	Thr	Thr	Asp	300 300	Leu	Gln	Ile	Leu
Ala 305	Tyr	Gly	Asn	Gln	Glu 310	Ser	Lys	Leu	Ile	Ile 315	Leu	Ala	Ser	Gly	Gly 320
Pro	Gln	Ala	Leu	Val 325	Asn	Ile	Met	Arg	Thr 330	Tyr	Thr	Tyr	Glu	Lys 335	Leu
Leu	Trp	Thr	Thr 340	Ser	Arg	Val	Leu	Lys 345	Val	Leu	Ser	Val	Сув 350	Ser	Ser
Asn	Lys	Pro 355	Ala	Ile	Val	Glu	Ala 360	Gly	Gly	Met	Gln	Ala 365	Leu	Gly	Leu
His	Leu 370	Thr	Asp	Pro	Ser	Gln 375	Arg	Leu	Val	Gln	Asn 380	Сув	Leu	Trp	Thr
Leu 385	Arg	Asn	Leu	Ser	390	Ala	Ala	Thr	ГÀа	Gln 395	Glu	Gly	Met	Glu	Gly 400
Leu	Leu	Gly	Thr	Leu 405	Val	Gln	Leu	Leu	Gly 410	Ser	Asp	Asp	Ile	Asn 415	Val
Val	Thr	Cys	Ala 420	Ala	Gly	Ile	Leu	Ser 425	Asn	Leu	Thr	Cys	Asn 430	Asn	Tyr
ГÀЗ	Asn	Lys 435	Met	Met	Val	Cys	Gln 440	Val	Gly	Gly	Ile	Glu 445	Ala	Leu	Val
Arg	Thr 450	Val	Leu	Arg	Ala	Gly 455	Asp	Arg	Glu	Asp	Ile 460	Thr	Glu	Pro	Ala
Ile 465	Сув	Ala	Leu	Arg	His 470	Leu	Thr	Ser	Arg	His 475	Gln	Glu	Ala	Glu	Met 480
Ala	Gln	Asn	Ala	Val 485	Arg	Leu	His	Tyr	Gly 490	Leu	Pro	Val	Val	Val 495	Lys
Leu	Leu	His	Pro 500	Pro	Ser	His	Trp	Pro 505	Leu	Ile	Lys	Ala	Thr 510	Val	Gly
Leu	Ile	Arg 515	Asn	Leu	Ala	Leu	Сув 520	Pro	Ala	Asn	His	Ala 525	Pro	Leu	Arg
Glu	Gln 530	Gly	Ala	Ile	Pro	Arg 535	Leu	Val	Gln	Leu	Leu 540	Val	Arg	Ala	His
Gln 545	Asp	Thr	Gln	Arg	Arg 550	Thr	Ser	Met	Gly	Gly 555	Thr	Gln	Gln	Gln	Phe 560
Val	Glu	Gly	Val	Arg 565	Met	Glu	Glu	Ile	Val 570	Glu	Gly	CAa	Thr	Gly 575	Ala
Leu	His	Ile	Leu 580	Ala	Arg	Asp	Val	His 585	Asn	Arg	Ile	Val	Ile 590	Arg	Gly
Leu	Asn	Thr 595	Ile	Pro	Leu	Phe	Val 600	Gln	Leu	Leu	Tyr	Ser 605	Pro	Ile	Glu
Asn	Ile 610	Gln	Arg	Val	Ala	Ala 615	Gly	Val	Leu	Cys	Glu 620	Leu	Ala	Gln	Asp
Lys 625	Glu	Ala	Ala	Glu	Ala 630	Ile	Glu	Ala	Glu	Gly 635	Ala	Thr	Ala	Pro	Leu 640
Thr	Glu	Leu	Leu	His 645	Ser	Arg	Asn	Glu	Gly 650	Val	Ala	Thr	Tyr	Ala 655	Ala

-continued

a Val	. Leu	Phe	Arg	Met	Ser	Glu	Asp	Lys	Pro	Gln	Asp	Tyr	Lys	Lys
		660					665					670		
g Lei		Val	Glu	Leu	Thr		Ser	Leu	Phe	Arg		Glu	Pro	Met
	6/5					660					000			
-		Glu	Thr	Ala	-	Leu	Gly	Leu	Asp		Gly	Ala	Gln	Gly
	Leu	Gly	Tyr	Arg 710	Gln	Asp	Asp	Pro	Ser 715	Tyr	Arg	Ser	Phe	His 720
Gly	gly	Tyr	Gly 725	Gln	Asp	Ala	Leu	Gly 730	Met	Asp	Pro	Met	Met 735	Glu
s Glu	ı Met	Gly 740	Gly	His	His	Pro	Gly 745	Ala	Asp	Tyr	Pro	Val 750	Asp	Gly
_	_						_	_		_		_	_	_
ı Pro	755	Leu	Gly	His	Ala	Gln 760	Asp	Leu	Met	Asp	Gly 765	Leu	Pro	Pro
_	_	_				_		_		_	_			
_		Asn	GIn	ьeu	A1a 775	Trp	rne	Asp	Tnr	780	ьeu			
	J Lev 690 690 11 Pro Fr Gly Fr Gly Asp	g Leu Ser 675 a Trp Asn 690 a Pro Leu 5 r Gly Gly s Glu Met a Pro Asp 755	G60 G Leu Ser Val 675 Trp Asn Glu 690 Leu Gly Gly Gly Tyr Glu Met Gly 740 Pro Asp Leu 755 Asp Ser Asn	660 g Leu Ser Val Glu 675 a Trp Asn Glu Thr 690 r Gly Gly Tyr Gly 725 s Glu Met Gly Gly 740 u Pro Asp Leu Gly 755 y Asp Ser Asn Gln	660 g Leu Ser Val Glu Leu 675 a Trp Asn Glu Thr Ala 690 l Pro Leu Gly Tyr Arg 710 r Gly Gly Tyr Gly Gln 725 s Glu Met Gly Gly His 740 u Pro Asp Leu Gly His 755 y Asp Ser Asn Gln Leu	G60 g Leu Ser Val Glu Leu Thr G75 a Trp Asn Glu Thr Ala Asp G90 r Pro Leu Gly Tyr Arg Gln 710 r Gly Gly Tyr Gly Gln Asp 725 s Glu Met Gly Gly His His 740 r Pro Asp Leu Gly His Ala 755 y Asp Ser Asn Gln Leu Ala	660 g Leu Ser Val Glu Leu Thr Ser 680 a Trp Asn Glu Thr Ala Asp Leu 690 r Pro Leu Gly Tyr Arg Gln Asp 710 r Gly Gly Tyr Gly Gln Asp Ala 725 s Glu Met Gly Gly His His Pro 740 r Pro Asp Leu Gly His Ala Gln 755 y Asp Ser Asn Gln Leu Ala Trp	660 665 g Leu Ser Val Glu Leu Thr Ser Ser 675 a Trp Asn Glu Thr Ala Asp Leu Gly 690 r Gly Gly Tyr Arg Gln Asp Ala Leu 725 s Glu Met Gly Gly His His Pro Gly 740 u Pro Asp Leu Gly His Ala Gln Asp 755 y Asp Ser Asn Gln Leu Ala Trp Phe	660 665 g Leu Ser Val Glu Leu Thr Ser Ser Leu 675 a Trp Asn Glu Thr Ala Asp Leu Gly Leu 690 r Gly Gly Tyr Gly Gln Asp Asp Pro 710 r Gly Gly Tyr Gly Gln Asp Ala Leu Gly 725 g Glu Met Gly Gly His His Pro Gly Ala 745 r Pro Asp Leu Gly His Ala Gln Asp Leu 755 y Asp Ser Asn Gln Leu Ala Trp Phe Asp	## GEO ##	660 665 g Leu Ser Val Glu Leu Thr Ser Ser Leu Phe Arg 675 a Trp Asn Glu Thr Ala Asp Leu Gly Leu Asp Ile 690 a Pro Leu Gly Tyr Arg Gln Asp Asp Pro Ser Tyr 710 r Gly Gly Tyr Gly Gln Asp Ala Leu Gly Met Asp 725 s Glu Met Gly Gly His His Pro Gly Ala Asp Tyr 740 a Pro Asp Leu Gly His Ala Gln Asp Leu Met Asp 755 y Asp Ser Asn Gln Leu Ala Trp Phe Asp Thr Asp	G60 G65 G75 G75 G75 G75 G75 G75 G75 G75 G75 G7	660 665 670 g Leu Ser Val Glu Leu Thr Ser Ser Leu Phe Arg Thr Glu 685 a Trp Asn Glu Thr Ala Asp Leu Gly Leu Asp Ile Gly Ala 700 r Gly Gly Tyr Arg Gln Asp Asp Pro Ser Tyr Arg Ser 710 r Gly Gly Tyr Gly Gln Asp Ala Leu Gly Met Asp Pro Met 725 g Glu Met Gly Gly His His Pro Gly Ala Asp Tyr Pro Val 740 r Pro Asp Leu Gly His Ala Gln Asp Leu Met Asp Gly Leu 755 y Asp Ser Asn Gln Leu Ala Trp Phe Asp Thr Asp Leu	G Leu Ser Val Glu Leu Thr Ser Ser Leu Phe Arg Thr Glu Pro 685 a Trp Asn Glu Thr Ala Asp Leu Gly Leu Asp Ile Gly Ala Gln 690 a Pro Leu Gly Tyr Arg Gln Asp Asp Pro Ser Tyr Arg Ser Phe 715 a Glu Met Gly Tyr Gly Gln Asp Ala Leu Gly Met Asp Pro Met Met 735 a Glu Met Gly Gly His His Pro Gly Ala Asp Tyr Pro Val Asp Asp Pro Asp Leu Gly His Ala Gln Asp Leu Met Asp Gly Leu Pro 755 a Ser Asn Gln Leu Ala Trp Phe Asp Thr Asp Leu

What is claimed is:

- epithelial cancer drug candidate comprising:
 - i) obtaining, by dissection from at least one D. melanogaster adult female fly, at least one D. melanogaster egg chamber which is genetically unmodified except that the at least one D. melanogaster egg chamber comprises at least one nucleotide sequence encoding a Par6 fusion protein under control of the Par6 endogenous promoter, wherein the Par6 fusion protein comprises a reporter polypeptide fused to Par6, and wherein the nucleic acid sequence that encodes the Par6 fusion protein and the Par6 endogenous promoter is SEQ ID NO: 10;
 - ii) contacting the at least one dissected egg chamber with the compound by soaking it in an incubation medium containing the compound; and
 - iii) comparing the level of expression of the Par6 fusion protein in the apical part of the follicular epithelium of 40 the at least one dissected egg chamber contacted with the compound, to the level in the apical part of the follicular epithelium of a corresponding at least one dissected egg chamber not contacted with the compound,
 - wherein the presence of a difference in the expression of 45 the Par6 fusion protein in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound compared to the apical part of the follicular epithelium of a corresponding at least one dissected egg chamber not contacted with the 50 compound identifies the compound as an epithelial cancer drug candidate.
- 2. The process of claim 1, wherein the difference in the expression of the Par6 fusion protein in the apical part of the follicular epithelium of the at least one dissected egg chamber 55 contacted with the compound compared to the apical part of the follicular epithelium of the corresponding at least one dissected egg chamber not contacted with the compound comprises increased or decreased expression.
- 3. The process of claim 1, wherein the difference in the 60 expression of the Par6 fusion protein in the apical part the follicular epithelium of the at least one dissected egg chamber contacted with the compound compared to the apical part of the follicular epithelium of the corresponding at least one dissected egg chamber not contacted with the compound 65 comprises a different localization of the Par6 fusion protein within follicle epithelial cells.

- 4. The process of claim 3, wherein there is proportionally 1. A process for identifying whether a compound is an 25 less localization of the Par6 fusion protein at the apical side of the follicle epithelial cells of the at least one dissected egg chamber contacted with the compound compared to the follicle epithelial cells of the corresponding at least one dissected egg chamber not contacted with the compound.
 - 5. The process of claim 1, wherein difference in the expression of the Par6 fusion protein in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound compared to the apical part of the follicular epithelium of the corresponding at least one dissected egg chamber not contacted with the compound comprises a different location of protein production or posttranscriptional modification of the Par6 fusion protein.
 - 6. A process for identifying whether a compound is an epithelial cancer drug candidate comprising:
 - (a) i) obtaining, by dissection from at least one D. melanogaster adult female fly, at least one D. melanogaster egg chamber which is genetically unmodified except that the at least one D. melanogaster egg chamber comprises at least one nucleotide sequence encoding a Par6 fusion protein under control of the Par6 endogenous promoter, wherein the Par6 fusion protein comprises a reporter polypeptide fused to Par6, wherein the nucleic acid sequence that encodes the Par6 fusion protein and the Par6 endogenous promoter is SEQ ID NO: 10;
 - ii) contacting the at least one dissected egg chamber with the compound, and up to four additional compounds by soaking it in an incubation medium containing the
 - iii) comparing the level of expression of the reporter polypeptide in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound and up to four additional compounds, to the level in the apical part of the follicular epithelium of a corresponding at least one dissected egg chamber not contacted with the compound and up to four additional compounds;
 - iv) if there is a difference in the expression of the reporter polypeptide in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound and up to four additional compounds compared to the apical part of the follicular epithelium of the corresponding at least one

98

99

- dissected egg chamber not contacted with the compound, contacting at least one additional dissected egg chamber according to step i) with the compound but not the additional compound or compounds of step ii) and step iii); and
- v) determining whether there is a difference in the expression of the reporter polypeptide in the apical part of the follicular epithelium of the at least one additional dissected egg chamber of step iv) and the apical part of the follicular epithelium of a corresponding at least one additional dissected egg chamber not contacted with the compound.
- wherein the presence of a difference in the expression of the reporter polypeptide in the apical part of the follicular epithelium of the at least one additional dissected egg chamber of iv) compared to the apical part of the follicular epithelium of the corresponding at least one additional dissected egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug candidate; or
- (b) i) obtaining, by dissection from at least one *D. melanogaster* adult female fly, at least one *D. melanogaster* egg chamber which is genetically unmodified except 25 that the at least one *D. melanogaster* egg chamber optionally comprises at least one nucleotide sequence encoding a Par6 fusion protein under control of the Par6 endo endogenous promoter, wherein the Par6 fusion protein comprises a reporter polypeptide fused to Par6, wherein the nucleic acid sequence that encodes the Par6 fusion protein and the Par6 endogenous promoter is SEQ ID NO: 10;
 - ii) contacting the at least one dissected egg chamber with the compound by soaking it in an incubation medium containing the compound;
 - iii) comparing the level of expression of the reporter polypeptide in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound, to the level in the apical part of the follicular epithelium of a corresponding at least one dissected egg chamber not contacted with the compound; and
 - iv) observing whether there is substantially more toxicity among cells other than follicle cells of the at least one dissected egg chamber contacted with the compound than in the corresponding at least one dissected egg chamber not contacted with the compound,
 - wherein the presence of a difference in expression of the reporter polypeptide in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound compared to the follicular epithelium of the corresponding at least one dissected egg chamber not contacted with the compound, without the presence of substantially more toxicity among cells other than follicle cells of the at least one dissected egg chamber contacted with the compound compared to the corresponding at least one dissected egg chamber not contacted with the compound, identifies the compound as an epithelial cancer drug candidate.
- 7. The process of claim 1, wherein at least 10, 15, 20, 25, or 65 50 dissected *D. melanogaster* egg chambers are obtained and contacted with the compound.

100

- **8**. A process for producing an epithelial cancer drug comprising:
 - (a) i) preparing or obtaining a group of compounds to be screened;
 - ii) performing the process of claim 1 for each compound from the group of compounds to identify an epithelial cancer drug candidate; and
 - iii) producing the compound identified in step ii), thereby producing the epithelial cancer drug, or
 - (b) i) obtaining, by dissection from at least one *D. melanogaster* adult female fly, at least one *D. melanogaster* egg chamber which is genetically unmodified except that the at least one *D. melanogaster* egg chamber comprises at least one nucleotide sequence encoding a Par6 fusion protein under control of the Par6 endogenous promoter, wherein the Par6 fusion protein comprises a reporter polypeptide fused to Par6, and wherein the nucleic acid sequence that encodes the Par6 fusion protein and the Par6 endogenous promoter is SEQ ID NO: 10:
 - ii) contacting the at least one dissected egg chamber with the compound by soaking it in an incubation medium containing the compound;
 - iii) comparing the level of expression of the Par6 fusion protein in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound, to the apical part of the follicular epithelium of a corresponding at least one dissected egg chamber not contacted with the compound, wherein the presence of a difference in the expression of the Par6 fusion protein in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound compared to the follicular epithelium of the corresponding at least one dissected egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug; and
 - iv) producing the compound identified in step iii), thereby producing the epithelial cancer drug, or
 - (c) i) obtaining, by dissection from at least one *D. melanogaster* adult female fly, at least one *D. melanogaster* egg chamber which is genetically unmodified except that the at least one *D. melanogaster* egg chamber optionally comprises at least one nucleotide sequence encoding a Par6 fusion protein under control of the Par6 endogenous promoter, wherein the Par6 fusion protein comprises a reporter polypeptide fused to Par6, and wherein the nucleic acid sequence that encodes the Par6 fusion protein and the Par6 endogenous promoter is SEQ ID NO: 10:
 - ii) contacting the at least one dissected egg chamber with the compound, and up to four additional compounds by soaking it in an incubation medium containing the compounds;
 - iii) comparing the level of expression of the Par6 fusion protein in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound and up to four additional compounds, to the level in the apical part of the follicular epithelium of a corresponding at least one dissected egg chamber not contacted with the compound and up to four additional compounds;
 - iv) if there is a difference in the expression of the Par6 fusion protein in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound and up to four additional compounds compared to the follicular epithelium of the corresponding at least one dissected egg chamber not contacted with the compound, contacting at least one additional dissected egg chamber

- according to step i) with the compound but not the additional compound or compounds of step ii) and step iii); and
- v) comparing the level of expression or the Par6 fusion protein in the apical part of the follicular epithelium of the at least one additional dissected egg chamber of step iv), to the level in the apical part of the follicular epithelium of the corresponding at least one additional dissected egg chamber not contacted with the compound, wherein the presence of a difference in the expression of the Par6 fusion protein in the apical part of the follicular epithelium of the at least one additional dissected egg chamber of step iv) compared to the apical part of the follicular epithelium of the corresponding at least one additional dissected egg chamber not contacted with the compound identifies the compound as an epithelial cancer drug; and
- vi) producing the compound identified in step v), thereby producing the epithelial cancer drug.
- 9. The process of claim 1, wherein the at least one dissected egg chamber is soaked in the incubation medium containing

102

the compound when the at least one dissected egg chamber is at a stage other than stage 1, 2, 3, or 4.

- 10. The process of claim 9, wherein the at least one dissected egg chamber is soaked in the incubation medium containing the compound when the at least one dissected egg chamber is at stage 7.
- 11. The process of claim 1, wherein the difference in the expression of the Par6 fusion protein in the apical part of the follicular epithelium of the at least one dissected egg chamber contacted with the compound compared to the expression of the Par6 fusion protein in the apical part of the follicular epithelium of a corresponding at least one dissected egg chamber not contacted with the compound is observed in a border cell, a stretch cell, a polar cell, or a centripetal cell using a microscope.
 - 12. The process of claim 1, wherein the epithelial cancer comprises cells with disrupted Par6 function or disrupted epithelial cell polarity.

* * * * *